Fire history on a desert mountain range: Rincon Mountain Wilderness, Arizona, U.S.A.

1990 ◽  
Vol 20 (10) ◽  
pp. 1559-1569 ◽  
Author(s):  
Christopher H. Baisan ◽  
Thomas W. Swetnam

Modern fire records and fire-scarred remnant material collected from logs, snags, and stumps were used to reconstruct and analyze fire history in the mixed-conifer and pine forest above 2300 m within the Rincon Mountain Wilderness of Saguaro National Monument, Arizona, United States. Cross-dating of the remnant material allowed dating of fire events to the calendar year. Estimates of seasonal occurrence were compiled for larger fires. It was determined that the fire regime was dominated by large scale (> 200 ha), early-season (May–July) surface fires. The mean fire interval over the Mica Mountain study area for the period 1657–1893 was 6.1 years with a range of 1–13 years for larger fires. The mean fire interval for the mixed-conifer forest type (1748–1886) was 9.9 years with a range of 3–19 years. Thirty-five major fire years between 1700 and 1900 were compared with a tree-ring reconstruction of the Palmer drought severity index (PDSI). Mean July PDSI for 2 years prior to fires was higher (wetter) than average, while mean fire year PDSI was near average. This 490-year record of fire occurrence demonstrates the value of high-resolution (annual and seasonal) tree-ring analyses for documenting and interpreting temporal and spatial patterns of past fire regimes.

2014 ◽  
Vol 23 (7) ◽  
pp. 959 ◽  
Author(s):  
Larissa L. Yocom ◽  
Peter Z. Fulé ◽  
Donald A. Falk ◽  
Celia García-Domínguez ◽  
Eladio Cornejo-Oviedo ◽  
...  

We investigated the influence of broad- v. fine-scale factors on fire in an unusual landscape suitable for distinguishing the drivers of fire synchrony. Our study was conducted in the Sierra Madre Oriental mountain range, in north-eastern Mexico. We worked in nine sites on three parallel mountains that receive nearly identical broad-scale climatic influence, but between which fires are unlikely to spread. We collected and cross dated samples from 357 fire-scarred trees in nine sites in high-elevation mixed-conifer forests and identified fire dates. We used Jaccard similarity analysis to evaluate synchrony among sites and quantified relationships between climate and fire occurrence. Fires were historically frequent (mean fire interval ranged from 8 to 16 years in all sites) and dates of fire exclusion ranged from 1887 to 1962. We found low fire synchrony among the three mountains, indicating a strong influence of fine-scale factors on fire occurrence. Fire regime attributes were similar across mountains despite the independence of fire dates. La Niña events were associated with fire over time, although not significantly since the 1830s. Our results highlight the importance of scale in describing fire regimes and suggest that we can use fire history to understand controls on complex ecosystem processes and patterns.


1998 ◽  
Vol 28 (5) ◽  
pp. 774-787 ◽  
Author(s):  
Colin J Long ◽  
Cathy Whitlock ◽  
Patrick J Bartlein ◽  
Sarah H Millspaugh

High-resolution analysis of macroscopic charcoal in sediment cores from Little Lake was used to reconstruct the fire history of the last 9000 years. Variations in sediment magnetism were examined to detect changes in allochthonous sedimentation associated with past fire occurrence. Fire intervals from ca. 9000 to 6850 calendar years BP averaged 110 ± 20 years, when the climate was warmer and drier than today and xerophytic vegetation dominated. From ca. 6850 to 2750 calendar years BP the mean fire interval lengthened to 160 ± 20 years in conjunction with the onset of cool humid conditions. Fire-sensitive species, such as Thuja plicata Donn ex D. Don, Tsuga heterophylla (Raf.) Sarg., and Picea sitchensis (Bong.) Carr., increased in abundance. At ca. 4000 calendar years BP, increases in allochthonous sedimentation increased the delivery of secondary charcoal to the site. From ca. 2750 calendar years BP to present, the mean fire interval increased to 230 ± 30 years as cool humid conditions and mesophytic taxa prevailed. The Little Lake record suggests that fire frequency has varied continuously on millennial time scales as a result of climate change and the present-day fire regime has been present for no more than 1000 years.


2020 ◽  
Vol 16 (2) ◽  
pp. 783-798
Author(s):  
Sarir Ahmad ◽  
Liangjun Zhu ◽  
Sumaira Yasmeen ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
...  

Abstract. The rate of global warming has led to persistent drought. It is considered to be the preliminary factor affecting socioeconomic development under the background of the dynamic forecasting of the water supply and forest ecosystems in West Asia. However, long-term climate records in the semiarid Hindu Kush range are seriously lacking. Therefore, we developed a new tree-ring width chronology of Cedrus deodara spanning the period of 1537–2017. We reconstructed the March–August Palmer Drought Severity Index (PDSI) for the past 424 years, going back to 1593 CE. Our reconstruction featured nine dry periods (1593–1598, 1602–1608, 1631–1645, 1647–1660, 1756–1765, 1785–1800, 1870–1878, 1917–1923, and 1981–1995) and eight wet periods (1663–1675, 1687–1708, 1771–1773, 1806–1814, 1844–1852, 1932–1935, 1965–1969, and 1990–1999). This reconstruction is consistent with other dendroclimatic reconstructions in West Asia, thereby confirming its reliability. The multi-taper method and wavelet analysis revealed drought variability at periodicities of 2.1–2.4, 3.3, 6.0, 16.8, and 34.0–38.0 years. The drought patterns could be linked to the large-scale atmospheric–oceanic variability, such as the El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation, and solar activity. In terms of current climate conditions, our findings have important implications for developing drought-resistant policies in communities on the fringes of the Hindu Kush mountain range in northern Pakistan.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  

Coniferous forests cover the mountains in many parts of Central Asia and provide large potentials for dendroclimatic studies of past climate variability. However, to date, only a few tree-ring based climate reconstructions exist from this region. Here, we present a regional tree-ring chronology from the moisture-sensitive Zeravshan juniper (Juniperus seravschanica Kom.) from the Kuramin Range (Tajikistan) in western Central Asia, which is used to reveal past summer drought variability from 1650 to 2015 Common Era (CE). The chronology accounts for 40.5% of the variance of the June–July self-calibrating Palmer Drought Severity Index (scPDSI) during the instrumental period (1901 to 2012). Seven dry periods, including 1659–1696, 1705–1722, 1731–1741, 1758–1790, 1800–1842, 1860–1875, and 1931–1987, and five wet periods, including 1742–1752, 1843–1859, 1876–1913, 1921–1930, and 1988–2015, were identified. Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals and capture the regional dry/wet periods of Central Asia. Moreover, the spectral analysis indicates the existence of centennial (128 years), decadal (24.3 and 11.4 years), and interannual (8.0, 3.6, 2.9, and 2.0 years) cycles, which may be linked with climate forces, such as solar activity and El Niño-Southern Oscillation (ENSO). The analysis between the scPDSI reconstruction and large-scale atmospheric circulations during the reconstructed extreme dry and wet years can provide information about the linkages of extremes in our scPDSI record with the large-scale ocean–atmosphere–land circulation systems.


2012 ◽  
Vol 88 (05) ◽  
pp. 553-555 ◽  
Author(s):  
Brooke A. Cassell ◽  
Ernesto Alvarado

A dendropyrochronological study was conducted in pine-dominated forest in the Sierra de Manantlán Biosphere Reserve located in the Sierra Madre del Sur mountain range in Mexico. Tropical pines present several difficulties for tree-ring research including missing, false and diffuse rings. This paper discusses the methods that were used to analyze tree rings in order to reconstruct fire history based on the dating of fire scars sampled from tropical pines.


Author(s):  
Michael Jenkins

The major objective of this ongoing study is to document vegetative changes resulting from alteration of the fire regime in the mixed conifer/aspen communities of Bryce Canyon National Park. Previous fire history studies have documented fire return intervals using fire scar analysis of ponderosa pine Pinus ponderosa in the park (Buchannan and Tolman 1983: Wight 1989) and for the Paunsaugunt Plateau (Stein 1988). Numerous other studies have similarly documented the fire regime in pre-European settlement ponderosa pine forests in western North America. The study is being conducted in the more mesic mixed conifer communities at the south end of Bryce Canyon National Park and will specifically document vegetative changes suggested by Roberts et al. (1992) resulting from suppression of frequent low intensity surface fires and overgrazing.


2009 ◽  
Vol 18 (6) ◽  
pp. 631 ◽  
Author(s):  
Aaron C. Greenville ◽  
Chris R. Dickman ◽  
Glenda M. Wardle ◽  
Mike Letnic

Implementing appropriate fire regimes has become an increasingly important objective for biodiversity conservation programs. Here, we used Landsat imagery from 1972 to 2003 to describe the recent fire history and current wildfire regime of the north-eastern Simpson Desert, Australia, within each of the region’s seven main vegetation classes. We then explored the relationship between antecedent rainfall and El Niño–Southern Oscillation with wildfire area. Wildfires were recorded in 11 years between 1972 and 2003, each differing in size. In 1975, the largest wildfire was recorded, burning 55% (4561 km2) of the study region. Smaller fires in the intervening years burnt areas that had mostly escaped the 1975 fire, until 2002, when 31% (2544 km2) of the study region burnt again. Wildfires burnt disproportionally more spinifex (Triodia basedowii) than any other vegetation class. A total of 49% of the study area has burnt once since 1972 and 20% has burnt twice. Less than 1% has burnt three times and 36% has remained unaffected by wildfire since 1972. The mean minimum fire return interval was 26 years. Two years of cumulative rainfall before a fire event, rainfall during the year of a fire event, and the mean Southern Oscillation Index from June to November in the year before a fire event could together be used to successfully predict wildfire area. We use these findings to describe the current fire regime.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Lauren F. Howard ◽  
Gabriel D. Cahalan ◽  
Kristyn Ehleben ◽  
Baaqeyah Amala Muhammad El ◽  
Hope Halza ◽  
...  

Abstract Background Our study was designed to reveal a detailed forest fire history at Catoctin Mountain Park, Maryland, USA. We compared the ages of living trees to known fire dates in the dendrochronological record. Seasonality and years of fires in the dendrochronological record were juxtaposed with specific dates of fires recorded in newspapers. Results Twenty-seven pines (Pinus L.) captured 122 fire scars representing 58 distinct fire years between 1702 and 1951. Climate was significantly hotter and drier in the years of burns that affected at least two trees and was wetter two years prior. Thirty-three fires described in local newspapers were reported largely in the spring and fall months (68% between March and June, 32% between September and December). Ninety-one percent of fire scars in our tree-ring chronology had dormant seasonality. The mean fire interval was 5.47 ± 10.14 (SD; standard deviation) yr, and the Weibull median fire interval was 3.22 yr during the entire chronology. The longest fire-free interval was from 1952 to 2018. The size structure of living trees was biased toward smaller black gums (Nyssa sylvatica Marshall) and oaks (Quercus L.) that recruited in the 1930s and 1940s. Most living pitch pines (Pinus rigida Mill) recruited between 1890 and 1910, but a few individuals recruited before the 1850s. Diversity of tree stems smaller than 10 cm diameter at breast height (DBH) was generally lacking; the youngest tree >10 cm DBH in our study area had recruited by 1967. Conclusions The Catoctin Mountains experienced frequent fire during the 1800s and early 1900s. The causes of fires were diverse, including accidental ignitions and purposeful cultural burning for berry (Vaccinium L.) production. The current forest developed during a period of low deer density and after the demise of the charcoal iron industry ended an era of logging. The lack of fire since the 1950s has encouraged the development of a black gum dominated mid- and understory. Management with frequent fire would facilitate pine and oak regeneration.


2000 ◽  
Vol 76 (2) ◽  
pp. 339-347 ◽  
Author(s):  
Daniel C. Dey ◽  
Richard P. Guyette

The regeneration and dominance of northern red oak (Quercus rubra L.) has been associated with fire throughout eastern North America. Red oak in central Ontario grows near the northern edge of its distribution in mixed hardwood-coniferous forests under mesic conditions where it competes with more shade-tolerant species. We hypothesized that the abundance of red oak in these stands was largely the result of anthropogenic burning and natural fires, which would favor the regeneration and recruitment of northern red oak over such shade-tolerant species as sugar maple (Acer saccharum Marsh.). Fire histories dating from the mid-1600s were constructed by dendrochronological methods from fire scars on stumps, trees, and natural remnants of red pine (Pinus resinosa Ait.), white pine (Pinus strobus L.), and red oak at six sites in south-central Ontario. Fire histories of the sites are characterized by abrupt changes in fire interval. As much or more variance in fire interval is found within sites as is found among sites. Differences in the mean fire interval among sites are related to the density and migration of historic aboriginal and European populations. The mean fire interval varied from more than 70 years to six years depending on site location and historic period. The occurrence and abundance of red oak is linked to anthropogenic fire regimes. Key words: northern red oak, white pine, fire history, ecology, anthropogenic, fire regime, dendrochronology


2021 ◽  
Author(s):  
Christopher Carcaillet ◽  
Benjamin Boulley ◽  
Frédérique Carcaillet

Abstract Background: The present article questions the relative importance of local- and large-scale processes on the long-term dynamics of fire in the subalpine belt in the western Alps. The study is based on soil charcoal dating and identification, several study sites in contrasting environmental conditions, and sampling of soil charcoal along the elevation gradient of each site. Based on local differences in biomass combustion, we hypothesize that local-scale processes have driven the fire history, while combustion homogeneity supports the hypothesis of the importance of large-scale processes, especially the climate. Results: The results show that biomass burning during the Holocene resulted from the nesting effects of climate, land use, and altitude, but was little influenced by topography (slope exposure: north versus south), soil (dryness, pH, depth), and vegetation. The mid-Holocene (6500–2700 cal BP) was an important period for climatic biomass burning in the subalpine ecosystems of the western Alps, while fires from about 2500 years ago appear much more episodic, prompting us to speculate that human society has played a vital role in their occurrence. Conclusion: Our working hypothesis assuming that the strength of mountain natural and local drivers should offset the effects of regional climate is not validated. The homogeneity of the fire regime between sites thus underscore that climate was the main driver during the Holocene of the western Alps. Long-term subalpine fires are controlled by climate at millennial scale. Local conditions count for little in determining variability at the century scale. The mid-Holocene was a chief period for climatic biomass burning in the subalpine zone, while fires during the late Holocene appear much more episodic, prompting the assumption that societal drivers has exercised key roles on their control.


Sign in / Sign up

Export Citation Format

Share Document