scholarly journals Tree-ring based spring precipitation reconstruction in the Sikhote-Alin Mountain Range

2020 ◽  
Author(s):  
Olga Ukhvatkina ◽  
Alexander Omelko ◽  
Dmitriy Kislov ◽  
Alexander Zhmerenetsky ◽  
Tatyana Epifanova ◽  
...  

Abstract. Here, we present precipitation reconstructions based on tree rings from Pinus koraiensis (Korean pine) from three sites placed along latitudinal (330 km) gradient in Sikhote-Alin mountains, Russian Far East. The tree-ring width chronologies were built using standard tree-ring procedures. We reconstructed the April–June precipitation for the southern Sikhote-Alin (SSA), March–June precipitation for the central Sikhote-Alin (CSA) and March–July precipitation for the northwestern Sikhote-Alin (NSA) over the 1609 to 2013, 1804 to 2009 and 1858 to 2013, respectively. We found that an important limiting factor for Korean pine growth was precipitation within the period when the air current coming from the continent during the cold period is replaced with the impact of the wet ocean air current. We identified common wet years for SSA, CSA and NSA occurred in 1805, 1853, 1877, 1903, 1906, 1927, 1983, 2009 and common dry years occurred in 1821, 1869, 1919, 1949 and 2003. Our reconstructions have 3, 15 and 60 year periods and corresponds to influence of the El Niño-Southern Oscillation and Pacific Decadal Oscillation on the region's climate and relevant processes, respectively. Despite the impact of various global processes, the main contribution to precipitation formation in study area is still made by the Pacific Ocean, which determines their amount and periodicity.

2021 ◽  
Vol 17 (2) ◽  
pp. 951-967
Author(s):  
Olga Ukhvatkina ◽  
Alexander Omelko ◽  
Dmitriy Kislov ◽  
Alexander Zhmerenetsky ◽  
Tatyana Epifanova ◽  
...  

Abstract. Climate reconstructions provide important insight into past climate variability and help us to understand the large-scale climate drivers and impact of climate change. However, our knowledge about long-term year-to-year climate variability is still limited due to the lack of high-resolution reconstructions. Here, we present the first precipitation reconstructions based on tree rings from Pinus koraiensis (Korean pine) from three sites placed along a latitudinal (330 km) gradient in the Sikhote-Alin' mountains in the Russian Far East. The tree-ring width chronologies were built using standard tree-ring procedures. We reconstructed the April–June precipitation for the southern Sikhote-Alin' (SSA), March–June precipitation for the central Sikhote-Alin' (CSA) and March–July precipitation for the northwestern Sikhote-Alin' (NSA) over the years 1602 to 2013, 1804 to 2009 and 1858 to 2013, respectively. We found that an important limiting factor for Korean pine growth was precipitation within the period when the air current coming from the continent during the cold period is replaced with the impact of the wet ocean air current. We identified that common wet years for SSA, CSA and NSA occurred in 1805, 1853, 1877, 1903, 1906, 1927, 1983 and 2009 and common dry years occurred in 1821, 1869, 1919, 1949 and 2003. Our reconstructions have 3-, 15- and 60-year periods, which suggests the influence of the El Niño–Southern Oscillation and Pacific Decadal Oscillation on the region's climate and relevant processes. Despite the impact of various global processes, the main contribution to precipitation formation in the study area is still made by the Pacific Ocean, which determines their amount and periodicity.


2020 ◽  
Vol 16 (2) ◽  
pp. 783-798
Author(s):  
Sarir Ahmad ◽  
Liangjun Zhu ◽  
Sumaira Yasmeen ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
...  

Abstract. The rate of global warming has led to persistent drought. It is considered to be the preliminary factor affecting socioeconomic development under the background of the dynamic forecasting of the water supply and forest ecosystems in West Asia. However, long-term climate records in the semiarid Hindu Kush range are seriously lacking. Therefore, we developed a new tree-ring width chronology of Cedrus deodara spanning the period of 1537–2017. We reconstructed the March–August Palmer Drought Severity Index (PDSI) for the past 424 years, going back to 1593 CE. Our reconstruction featured nine dry periods (1593–1598, 1602–1608, 1631–1645, 1647–1660, 1756–1765, 1785–1800, 1870–1878, 1917–1923, and 1981–1995) and eight wet periods (1663–1675, 1687–1708, 1771–1773, 1806–1814, 1844–1852, 1932–1935, 1965–1969, and 1990–1999). This reconstruction is consistent with other dendroclimatic reconstructions in West Asia, thereby confirming its reliability. The multi-taper method and wavelet analysis revealed drought variability at periodicities of 2.1–2.4, 3.3, 6.0, 16.8, and 34.0–38.0 years. The drought patterns could be linked to the large-scale atmospheric–oceanic variability, such as the El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation, and solar activity. In terms of current climate conditions, our findings have important implications for developing drought-resistant policies in communities on the fringes of the Hindu Kush mountain range in northern Pakistan.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1017
Author(s):  
Anna S. Vozmishcheva ◽  
Svetlana N. Bondarchuk ◽  
Mikhail N. Gromyko ◽  
Dmitriy E. Kislov ◽  
Elena A. Pimenova ◽  
...  

Tropical cyclones (hurricanes and typhoons) cause large-scale disturbances in forest ecosystems all over the world. In the summer of 2016, a strong tropical cyclone named Lionrock created windthrow patches in the area of more than 400 km2 on the forested eastern slopes of the Sikhote-Alin Range, in the Russian Far East. Such large-scale forest destruction by wind had never been recorded in the area prior to this event. We examined the tropical cyclone impact upon the forest composition, structure and tree mortality rates on two study sites (1 ha and 0.5 ha in size)—a contiguous windthrow patch site, and a site with partial canopy damage. Korean pine (Pinus koraiensis Siebold and Zucc.), Manchurian fir (Abies nephrolepis Trautv.) and Dahurian larch (Larix cajanderi Mayr.) were the primary tree species represented in the affected forest communities. Combined with the partial canopy damage, 7.7% of trees were blown down by the disturbance event. We determined that this one event mortality rate nearly equaled the average mortality rate for a ten year period for these forests (8.5 ± 4.0%) under normal conditions (no large-scale disturbances). Within a contiguous windthrow patch, tree mortality was determined to be 52.6%, which is significantly higher than the cumulative tree loss for the previous 50 years (42.4%). A substantial portion of thinner-stemmed trees (DBH (diameter measured at breast height) < 30 cm) were wind snapped, and those with larger diameters (DBH > 60 cm) were uprooted. Our results indicate that the probability of tree loss due to catastrophic wind loads increases as a result of the decrease in local density. We believe that tree loss estimates should include the impacts within contiguous patches of windthrows, as well as the patches with only partial tree canopy damage. Strong wind impact forecasting is possible with accounting for species composition within the stand sites and their spatial structure.


2018 ◽  
Vol 14 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Olga N. Ukhvatkina ◽  
Alexander M. Omelko ◽  
Alexander A. Zhmerenetsky ◽  
Tatyana Y. Petrenko

Abstract. The aim of our research was to reconstruct climatic parameters (for the first time for the Sikhote-Alin mountain range) and to compare them with global climate fluctuations. As a result, we have found that one of the most important limiting factors for the study area is the minimum temperatures of the previous autumn–winter season (August–December), and this finding perfectly conforms to that in other territories. We reconstructed the previous August–December minimum temperature for 485 years, from 1529 to 2014. We found 12 cold periods (1535–1540, 1550–1555, 1643–1649, 1659–1667, 1675–1689, 1722–1735, 1791–1803, 1807–1818, 1822–1827, 1836–1852, 1868–1887, 1911–1925) and seven warm periods (1560–1585, 1600–1610, 1614–1618, 1738–1743, 1756–1759, 1776–1781, 1944–2014). These periods correlate well with reconstructed data for the Northern Hemisphere and the neighboring territories of China and Japan. Our reconstruction has 3-, 9-, 20-, and 200-year periods, which may be in line with high-frequency fluctuations in El Niño–Southern Oscillation (ENSO), the short-term solar cycle, Pacific Decadal Oscillation (PDO) fluctuations, and the 200-year solar activity cycle, respectively. We suppose that the temperature of the North Pacific, expressed by the PDO may make a major contribution to regional climate variations. We also assume that the regional climatic response to solar activity becomes apparent in the temperature changes in the northern part of Pacific Ocean and corresponds to cold periods during the solar minimum. These comparisons show that our climatic reconstruction based on tree ring chronology for this area may potentially provide a proxy record for long-term, large-scale past temperature patterns for northeastern Asia. The reconstruction reflects the global traits and local variations in the climatic processes of the southern territory of the Russian Far East for more than the past 450 years.


IAWA Journal ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 331-S5 ◽  
Author(s):  
C. Alvites ◽  
G. Battipaglia ◽  
G. Santopuoli ◽  
H. Hampel ◽  
R.F. Vázquez ◽  
...  

ABSTRACTRelict tree species in the Andean mountains are important sources of information about climate variability and climate change. This study deals with dendroclimatology and growth patterns in Polylepis reticulata Hieron., growing at high elevation (mean of 4000 m a.s.l.) in three sites of the Ecuadorian Andes. The aims of the research were: (i) characterizing tree-ring boundaries; (ii) describing tree-ring patterns of the study sites; (iii) investigating the relationships between climate and radial tree growth; and (iv) determining the spatial correlation between seasonal climatic factors and tree-ring width of P. reticulata. Tree rings were characterized by semi-ring porosity and slight differences in fibre wall thickness between latewood and subsequent earlywood. In all sampling sites, tree rings in heartwood were more clearly visible than in sapwood. Tree-ring width was more related to temperature than to precipitation, with growth being also affected by site conditions and stand structure, as well as other local factors. No significant relationships were found between tree-ring chronologies of P. reticulata and El Niño-Southern Oscillation (ENSO) and Vapour Pressure Deficit indices. The study highlights that there is not a clear driving climate factor for radial growth of P. reticulata. Additional research is needed to study growth dynamics of this species and the impacts of local environmental variables.


2019 ◽  
Vol 15 (2) ◽  
pp. 685-700 ◽  
Author(s):  
Olga V. Churakova (Sidorova) ◽  
Marina V. Fonti ◽  
Matthias Saurer ◽  
Sébastien Guillet ◽  
Christophe Corona ◽  
...  

Abstract. Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. To detect temperature and hydroclimatic changes after strong stratospheric Common Era (CE) volcanic eruptions for the last 1500 years (535 CE unknown, 540 CE unknown, 1257 CE Samalas, 1640 CE Parker, 1815 CE Tambora, and 1991 CE Pinatubo), we measured and analyzed tree-ring width (TRW), maximum latewood density (MXD), cell wall thickness (CWT), and δ13C and δ18O in tree-ring cellulose chronologies of climate-sensitive larch trees from three different Siberian regions (northeastern Yakutia – YAK, eastern Taimyr – TAY, and Russian Altai – ALT). All tree-ring proxies proved to encode a significant and specific climatic signal of the growing season. Our findings suggest that TRW, MXD, and CWT show strong negative summer air temperature anomalies in 536, 541–542, and 1258–1259 at all studied regions. Based on δ13C, 536 was extremely humid at YAK, as was 537–538 in TAY. No extreme hydroclimatic anomalies occurred in Siberia after the volcanic eruptions in 1640, 1815, and 1991, except for 1817 at ALT. The signal stored in δ18O indicated significantly lower summer sunshine duration in 542 and 1258–1259 at YAK and 536 at ALT. Our results show that trees growing at YAK and ALT mainly responded the first year after the eruptions, whereas at TAY, the growth response occurred after 2 years. The fact that differences exist in climate responses to volcanic eruptions – both in space and time – underlines the added value of a multiple tree-ring proxy assessment. As such, the various indicators used clearly help to provide a more realistic picture of the impact of volcanic eruption on past climate dynamics, which is fundamental for an improved understanding of climate dynamics, but also for the validation of global climate models.


2020 ◽  
Author(s):  
Milena Godoy-Veiga ◽  
Giuliano Locosselli ◽  
Lior Regev ◽  
Elisabetta Boaretto ◽  
Gregório Ceccantini

&lt;p&gt;Tree-ring chronologies are an excellent climate archive for their spatial and temporal resolution. While networks of chronologies have been built outside the tropics helping to understand past regional climate trends, tropical regions still lag behind in terms of spatial coverage. Dendrochronological studies, however, may succeed in seasonally dry tropical forests where the growing season is well defined. &lt;em&gt;Amburana cearensis&lt;/em&gt;, found in both dry and wet forests in South America, is poorly explored for dendrochronological purposes, with no previous study in Brazil. Therefore, we sampled trees growing in a seasonally dry forest in a karstic area in Central-Eastern Brazil, under the South American Monsoon domain, in order to explore this species potential for dendroclimatological studies in the region. We build a tree-ring width chronology using 26 trees. We found a strong common growth signal among trees, with an r-bar of 0.51 and an average mean sensitivity of 0.50. The standard tree-ring width chronology showed a significant negative correlation with Vapor-Pressure Deficit during the entire wet season (0.54), negative correlation with temperature at the end of the wet season (0.45), and a positive correlation with the sum of precipitation during the wet season (0.46). Further stable isotopic analysis will provide additional records of climate variability in the region. Since Amburana cearensis occurs across most of the seasonally dry forests and savannas from South America, it has a great potential to be used to develop climate reconstructions and verify the effects of climate change currently affecting the region.&lt;/p&gt;


2020 ◽  
Vol 47 (1) ◽  
pp. 13-22
Author(s):  
Yangao Jiang ◽  
Yu Wang ◽  
Junhui Zhang ◽  
Shijie Han ◽  
Cassius E.O. Coombs ◽  
...  

AbstractIn this study, the mean temperature of June to July was reconstructed for the period of 1880 to 2014 by using the Larix gmelinii tree-ring width data for the Mangui region in the northern Daxing’an Mountains, China. The reconstruction accounts for 43.6% of the variance in the temperature observed from AD 1959–2014. During the last 134 years, there were 17 warm years and 17 cold years, which accounted for 12.7% of the total reconstruction years, respectively. Cold episodes occurred throughout 1887–1898 (average value is 14.2°C), while warm episodes occurred during 1994–2014 (15.9°C). Based on this regional study, the warmer events coincided with dry periods and the colder events were consistent with wet conditions. The spatial correlation analyses between the reconstructed series and gridded temperature data revealed that the regional climatic variations were well captured by this study and the reconstruction represented a regional temperature signal for the northern Daxing’an Mountains. In addition, Multi-taper method spectral analysis revealed the existence of significant periodicities in our reconstruction. Significant spectral peaks were found at 29.7, 10.9, 2.5, and 2.2 years. The significant spatial correlations between our temperature reconstruction and the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Solar activity suggested that the temperature in the Daxing’an Mountains area indicated both local-regional climate signals and global-scale climate changes.


2020 ◽  
Vol 11 (2) ◽  
pp. 127-134
Author(s):  
Branko Stajić ◽  
Marko Kazimirović ◽  
Vojislav Dukić ◽  
Nenad Radaković

In order to assess the impact of climate variations on Austrian pine forest in the Belgrade area, the radial growth of artificially-established Austrian pine trees and its dependence on temperature and precipitation was studied using dendroclimatological methods. The site is classified as Quercetum-frainetto cerris Rudski. Standard and residual chronologies were established and several common statistics were calculated. A dendroclimatic study was carried out using the correlation and response function analysis. The Pearson correlation coefficients between the chronology indices and 13 seasonal (3-month period) precipitation and temperature data were calculated for the period from 1959 to 2014. The applied response function analysis included 24 precipitation and temperature variables from October of the prior year to September of the current year. The results of the correlation analysis pointed out that there was a strong tendency towards a positive response to the summer and late summer/early autumn precipitation and a weak significant negative response to the spring and summer temperatures. Climate-growth relationships were further first studied using the response functions for the significant seasons that were detected from the correlation analysis and then for individual months from previous October to current September. These results also highlighted the findings that higher precipitation in the current summer months has a beneficial effect on the tree-ring width. The conducted correlation between the residual chronology and the Standardised Precipitation Evapotranspiration Index indicated that a high summer value of this drought index had a positive impact on the pine growth and reinforced the previously detected relevance of September as an important month for the Austrian pine growth. These preliminary results point out that some additional climate-Austrian pine growth studies (application of various tree-ring features, growth data with a much longer time span, more sites/stands, etc.) should be performed to obtain new and valuable knowledge important for the sustainable management of Austrian pine forests.


Sign in / Sign up

Export Citation Format

Share Document