scholarly journals Dansgaard-Oeschger events: tipping points in the climate system

2012 ◽  
Vol 8 (5) ◽  
pp. 4269-4294 ◽  
Author(s):  
A. A. Cimatoribus ◽  
S. S. Drijfhout ◽  
V. Livina ◽  
G. van der Schrier

Abstract. The largest variability in temperature over the last sixty thousand years is connected with Dansgaard-Oeschger events. Various prototype models have been proposed to explain these rapid climate fluctuations, but until now no observational constraint has been forwarded to choose between different theories. We assess the bimodality of the system reconstructing the topology of the multi-dimensional attractor over which the climate system evolves. Furthermore, we show that Dansgaard-Oeschger events are compatible with the crossing of a tipping point in the climate system. We use high-resolution ice core isotope data to investigate the statistical properties of the climate fluctuations in the period before the onset of the abrupt change. We find that the statistics are consistent with the switches between two different climate equilibrium states in response to a changing external forcing.

2013 ◽  
Vol 9 (1) ◽  
pp. 323-333 ◽  
Author(s):  
A. A. Cimatoribus ◽  
S. S. Drijfhout ◽  
V. Livina ◽  
G. van der Schrier

Abstract. Dansgaard–Oeschger events are a prominent mode of variability in the records of the last glacial cycle. Various prototype models have been proposed to explain these rapid climate fluctuations, and no agreement has emerged on which may be the more correct for describing the palaeoclimatic signal. In this work, we assess the bimodality of the system, reconstructing the topology of the multi-dimensional attractor over which the climate system evolves. We use high-resolution ice core isotope data to investigate the statistical properties of the climate fluctuations in the period before the onset of the abrupt change. We show that Dansgaard–Oeschger events have weak early warning signals if the ensemble of events is considered. We find that the statistics are consistent with the switches between two different climate equilibrium states in response to a changing external forcing (e.g. solar, ice sheets), either forcing directly the transition or pacing it through stochastic resonance. These findings are most consistent with a model that associates Dansgaard–Oeschger with changing boundary conditions, and with the presence of a bifurcation point.


2021 ◽  
Author(s):  
Denis-Didier Rousseau ◽  
Witold Bagniewski ◽  
Michael Ghil

<p>Early evidence of abrupt transitions in Camp Century and Dye 3 Greenland ice cores (Dansgaard et al. 1982) has recently been reinforced by the identification of additional abrupt transitions in the NGRIP ice core (Rasmussen et al. 2014). These additional events correspond to changes of either short duration or amplitude of d<sup>18</sup>O that visual or statistical inspections do not necessarily validate. Abrupt transitions have been described for marine (Bond et al. 1992) and continental (Wang et al. 2001) records as well, and they provide a broader spatial perspective. Finally, abrupt transitions have also been documented over much deeper timescales (Zachos et al., 2001, Hodell & Channel, 2016, Westerhold et al. 2020). In spite of the variable time resolution of all these records, the abrupt transitions seem to reflect the individual impact of external forcing, of internal climate variability, or a combination of the two on Earth’s climate system. To illustrate this, we have analyzed 4 reference datasets with timescales ranging from one glacial cycle — i.e., the last 130,000 years — to the last 70 Ma. We show patterns that repeat within a single glacial cycle and seem to be related to internal variability, along with patterns associated with longer time periods and possibly related to external forcing; such forcing may arise from changes in either Earth’s orbit or its dynamics. This study is supported by the H2020-funded Tipping Points in the Earth System (TiPES) project.</p>


2020 ◽  
Author(s):  
Paul Ritchie ◽  
Peter Cox ◽  
Jan Sieber

<p>A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive<br>feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. We demonstrate the inverse-square law relationship using simple models of recognised potential future tipping points in the climate system. </p>


2020 ◽  
Author(s):  
Anna von der Heydt ◽  
Peter Ashwin

<p>The equilibrium climate sensitivity (ECS) is widely used as a measure for possible future global warming. It has been determined from a wide range of climate models, observations and palaeoclimate records, however, it still remains relatively unconstrained. In particular, large values of warming as a consequence of atmospheric greenhouse gas increase cannot be excluded, with some of the most recent state-of-the-art climate models (CMIP6) supporting (much) more warming than previous generations of climate models. Moreover, a number of tipping elements have been identified within the climate system, some of which may affect the global mean temperature. Therefore, it is interesting to explore how the climate systems response (e.g. ECS) behaves when the system is close to a tipping point. <br>A climate state close to a tipping point will have a degenerate linear response to perturbations, which can be associated with extreme values of the equilibrium climate sensitivity (ECS). In this talk we contrast linearized ('instantaneous') with fully nonlinear geometric ('two-point') notions of ECS, in both presence and absence of tipping points. For a stochastic energy balance model of the global mean surface temperature with two stable regimes, we confirm that tipping events cause the appearance of extremes in both notions of ECS. Moreover, multiple regimes with different mean sensitivities are visible in the two-point ECS. We confirm some of our findings in a physics-based multi-box model of the climate system.</p><p><strong>Reference</strong><br>P. Ashwin and A. S. von der Heydt (2019), Extreme Sensitivity and Climate Tipping Points, J. Stat. Phys.  <strong>370</strong>, 1166–24. http://doi.org/10.1007/s10955-019-02425-x.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
E. Capron ◽  
S. O. Rasmussen ◽  
T. J. Popp ◽  
T. Erhardt ◽  
H. Fischer ◽  
...  

AbstractData availability and temporal resolution make it challenging to unravel the anatomy (duration and temporal phasing) of the Last Glacial abrupt climate changes. Here, we address these limitations by investigating the anatomy of abrupt changes using sub-decadal-scale records from Greenland ice cores. We highlight the absence of a systematic pattern in the anatomy of abrupt changes as recorded in different ice parameters. This diversity in the sequence of changes seen in ice-core data is also observed in climate parameters derived from numerical simulations which exhibit self-sustained abrupt variability arising from internal atmosphere-ice-ocean interactions. Our analysis of two ice cores shows that the diversity of abrupt warming transitions represents variability inherent to the climate system and not archive-specific noise. Our results hint that during these abrupt events, it may not be possible to infer statistically-robust leads and lags between the different components of the climate system because of their tight coupling.


2017 ◽  
Vol 29 (4) ◽  
pp. 382-393
Author(s):  
A. Massam ◽  
S.B. Sneed ◽  
G.P. Lee ◽  
R.R. Tuckwell ◽  
R. Mulvaney ◽  
...  

AbstractA model to estimate the annual layer thickness of deposited snowfall at a deep ice core site, compacted by vertical strain with respect to depth, is assessed using ultra-high-resolution laboratory analytical techniques. A recently established technique of high-resolution direct chemical analysis of ice using ultra-violet laser ablation inductively-coupled plasma mass spectrometry (LA ICP-MS) has been applied to ice from the Berkner Island ice core, and compared with results from lower resolution techniques conducted on parallel sections of ice. The results from both techniques have been analysed in order to assess the capability of each technique to recover seasonal cycles from deep Antarctic ice. Results do not agree with the annual layer thickness estimates from the age–depth model for individual samples <1 m long as the model cannot reconstruct the natural variability present in annual accumulation. However, when compared with sections >4 m long, the deviation between the modelled and observational layer thicknesses is minimized to within two standard deviations. This confirms that the model is capable of successfully estimating mean annual layer thicknesses around analysed sections. Furthermore, our results confirm that the LA ICP-MS technique can reliably recover seasonal chemical profiles beyond standard analytical resolution.


Weather ◽  
2021 ◽  
Author(s):  
Timothy M. Lenton

2016 ◽  
Vol 12 (7) ◽  
pp. 1583-1590 ◽  
Author(s):  
Yuhui Liu ◽  
Chaoyong Hu

Abstract. The 8.2 ka BP event could provide important information for predicting abrupt climate change in the future. Although published records show that the East Asian monsoon area responded to the 8.2 ka BP event, there is no high-resolution quantitative reconstructed climate record in this area. In this study, a reconstructed 10-year moving average annual rainfall record in southwest China during the 8.2 ka BP event is presented by comparing two high-resolution stalagmite δ18O records from Dongge cave and Heshang cave. This decade-scale rainfall reconstruction is based on a central-scale model and is confirmed by inter-annual monitoring records, which show a significant positive correlation between the regional mean annual rainfall and the drip water annual average δ18O difference from two caves along the same monsoon moisture transport pathway from May 2011 to April 2014. Similar trends between the reconstructed rainfall and the stalagmite Mg ∕ Ca record, another proxy of rainfall, during the 8.2 ka BP period further increase the confidence of the quantification of the rainfall record. The reconstructed record shows that the mean annual rainfall in southwest China during the central 8.2 ka BP event is less than that of present (1950–1990) by  ∼  200 mm and decreased by  ∼  350 mm in  ∼  70 years experiencing an extreme drying period lasting for  ∼  50 years. Comparison of the reconstructed rainfall record in southwest China with Greenland ice core δ18O and δ15N records suggests that the reduced rainfall in southwest China during the 8.2 ka BP period was coupled with Greenland cooling with a possible response rate of 110 ± 30 mm °C−1.


2017 ◽  
Vol 11 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Sentia Goursaud ◽  
Valérie Masson-Delmotte ◽  
Vincent Favier ◽  
Susanne Preunkert ◽  
Michel Fily ◽  
...  

Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.


Sign in / Sign up

Export Citation Format

Share Document