Deposition of Organic Compounds on Alpine Snow

Author(s):  
Grant Francis ◽  
Dušan Materić ◽  
Elke Ludewig ◽  
Thomas Röckmann ◽  
Rupert Holzinger

<p>Currently, little is understood about the deposition and re-volatilisation of organic matter (OM) in snow. Understanding this balance for individual organic compounds has the potential to provide important information about present and past atmospheric conditions. This research investigates in detail the deposition and re-volatilisation rates for specific atmospheric OM that are present in alpine snow. Captured in the blank canvas of snow, any dissolved organic matter (DOM) in surface snow will reflect the relative abundances in the atmosphere once their deposition and revolatilisation rates are known. Likewise, DOM effectively preserved in glacial ice will also express relative atmospheric composition of past climates. A recent pilot study by D. Materić et al.[1] investigates the post-precipitation change of OM in snow near the Sonnblick Observatory in the Austrian Alps. Using proton transfer reaction mass spectrometry, surface snow samples taken over several days were analyzed, and any organics found were grouped by their similar dynamics. This research expands on this study by analyzing snow samples over a larger spatial domain around Sonnblick during the course of five days in conjunction with long-term snow sampling currently underway at the observatory. Together, analysis of these samples will reveal changes in OM in surface snow over the course of the entire melt season. This research also considers both filtered and unfiltered snow samples to differentiate and identify OM of different sizes that are present within each sample. Long-term measurements of post-precipitation OM in surface snow will provide more coherent trends for deposition and re-volatilisation rates of organics, which can be used to tie future measurements of DOM in surface snow to atmospheric OM.</p>

Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Charel Wohl ◽  
David Capelle ◽  
Anna Jones ◽  
William T. Sturges ◽  
Philip D. Nightingale ◽  
...  

Abstract. We present a technique that utilises a segmented flow coil equilibrator coupled to a proton-transfer-reaction mass spectrometer to measure a broad range of dissolved volatile organic compounds. Thanks to its relatively large surface area for gas exchange, small internal volume, and smooth headspace–water separation, the equilibrator is highly efficient for gas exchange and has a fast response time (under 1 min). The system allows for both continuous and discrete measurements of volatile organic compounds in seawater due to its low sample water flow (100 cm3 min−1) and the ease of changing sample intake. The equilibrator setup is both relatively inexpensive and compact. Hence, it can be easily reproduced and installed on a variety of oceanic platforms, particularly where space is limited. The internal area of the equilibrator is smooth and unreactive. Thus, the segmented flow coil equilibrator is expected to be less sensitive to biofouling and easier to clean than membrane-based equilibration systems. The equilibrator described here fully equilibrates for gases that are similarly soluble or more soluble than toluene and can easily be modified to fully equilibrate for even less soluble gases. The method has been successfully deployed in the Canadian Arctic. Some example data from underway surface water and Niskin bottle measurements in the sea ice zone are presented to illustrate the efficacy of this measurement system.


2014 ◽  
Vol 14 (15) ◽  
pp. 22163-22216 ◽  
Author(s):  
C. E. Stockwell ◽  
P. R. Veres ◽  
J. Williams ◽  
R. J. Yokelson

Abstract. We deployed a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) to measure biomass burning emissions from peat, crop-residue, cooking fires, and many other fire types during the fourth Fire Lab at Missoula Experiment (FLAME-4) laboratory campaign. A combination of gas standards calibrations and composition sensitive, mass dependent calibration curves were applied to quantify gas-phase non-methane organic compounds (NMOCs) observed in the complex mixture of fire emissions. We used several approaches to assign best identities to most major "exact masses" including many high molecular mass species. Using these methods approximately 80–96% of the total NMOC mass detected by PTR-TOF-MS and FTIR was positively or tentatively identified for major fuel types. We report data for many rarely measured or previously unmeasured emissions in several compound classes including aromatic hydrocarbons, phenolic compounds, and furans; many of which are suspected secondary organic aerosol precursors. A large set of new emission factors (EFs) for a range of globally significant biomass fuels is presented. Measurements show that oxygenated NMOCs accounted for the largest fraction of emissions of all compound classes. In a brief study of various traditional and advanced cooking methods, the EFs for these emissions groups were greatest for open 3-stone cooking in comparison to their more advanced counterparts. Several little-studied nitrogen-containing organic compounds were detected from many fuel types that together accounted for 0.1–8.7% of the fuel nitrogen and some may play a role in new particle formation.


2012 ◽  
Vol 12 (8) ◽  
pp. 20435-20482 ◽  
Author(s):  
J.-H. Park ◽  
A. H. Goldstein ◽  
J. Timkovsky ◽  
S. Fares ◽  
R. Weber ◽  
...  

Abstract. During summer 2010, a proton transfer reaction-time of flight-mass spectrometer (PTR-TOF-MS) and a standard proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data suitable for eddy covariance (EC) flux calculations. The high time resolution (5 Hz) and high mass resolution (up to 5000 m Δ m−1) data from the PTR-TOF-MS provided the basis for calculating the concentration and flux for a wide range of volatile organic compounds (VOC). Throughout the campaign, 664 mass peaks were detected in mass-to-charge ratios between 10 and 1278. Here we present PTR-TOF-MS EC fluxes of the 27 ion species for which the vertical gradient was simultaneously measured by PTR-MS. These EC flux data were validated through spectral analysis (i.e. co-spectrum, normalized co-spectrum, and ogive). Based on inter-comparison of the two PTR instruments, no significant instrumental biases were found in either mixing ratios or fluxes, and the data showed agreement within 5% on average for methanol and acetone. For the measured biogenic volatile organic compounds (BVOC), the EC fluxes from PTR-TOF-MS were in agreement with the qualitatively inferred flux directions from vertical gradient measurements by PTR-MS. For the 27 selected ion species reported here, the PTR-TOF-MS measured total (24 h) mean net flux of 299 μg C m−2 h−1. The dominant BVOC emissions from this site were monoterpenes (m/z 81.070 + m/z 137.131 + m/z 95.086, 34%, 102 μg C m−2 h−1) and methanol (m/z 33.032, 18%, 72 μg C m−2 h−1). The next largest fluxes were detected at the following masses (attribution in parenthesis): m/z 59.048 (mostly acetone, 12.2%, 36.5 μg C m−2 h−1), m/z 61.027 (mostly acetic acid, 11.9%, 35.7 μg C m−2 h−1), m/z 93.069 (para-cymene + toluene, 4.1%, 12.2 μg C m−2 h−1), m/z 45.033 (acetaldehyde, 3.8%, 11.5 μg C m−2 h−1), m/z 71.048 (methylvinylketone + methacrolein, 2.4%, 7.1 μg C m−2 h−1), and m/z 69.071 (isoprene + 2-methyl-3-butene-2-ol, 1.8%, 5.3 μg C m−2 h−1). Low levels of emission and/or deposition (<1.6% for each, 5.8% in total flux) were observed for the additional reported masses. Overall, our results show that EC flux measurements using PTR-TOF-MS is a powerful new tool for characterizing the biosphere-atmosphere exchange including both emission and deposition for a large range of BVOC and their oxidation products.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 61-68 ◽  
Author(s):  
E.-H. Choi ◽  
B. Klapwijk ◽  
A. Mels ◽  
H. Brouwer

Wastewater contains various organic components with different physical and biochemical characteristics. ASM No. 1 distinguishes two categories of biodegradable organic matter in wastewater, rapidly and slowly biodegradable. In general there are two methods for wastewater characterization: based on filtration in combination with a long-term BOD test or based on a respirogram. By comparing both approaches, we showed that in wastewater three categories of organic compounds with different biodegradation rates can be distinguished. These categories are referred to as readily biodegradable, rapidly hydrolysable and slowly hydrolysable organic matter. The total biodegradable COD can be found from a long-term BOD-test combined with a curve-fit and the readily biodegradable and rapidly hydrolysable from a respirogram. The slowly hydrolysable is the difference between total biodegradable COD and the sum of readily biodegradable and rapidly hydrolysable COD. Simulation with characterization based on filtration for a pre-anoxic reactor with a certain N-removal compared with the N-removal of the same plant with wastewater according to the modified characterization shows different results of each wastewater, especially with regard to the effluent nitrate concentration.


Sign in / Sign up

Export Citation Format

Share Document