North Atlantic decadal variability in a coupled global model and relevance to observations

Author(s):  
Yochanan Kushnir ◽  
Dog Run (Donna) Lee ◽  
Mingfang Ting

<p>This study focuses on the decadal time scale variability of the North Atlantic Ocean-Atmosphere system. This time scale is relevant to preparedness and adaptation as society becomes increasingly threatened by the adverse impact of anthropogenic climate change. North Atlantic decadal climate variability has been related to interaction between the subpolar and subtropical gyre and manifested in persistent multi-year SST and heat content anomalies and shifts in the latitude of the Gulf Stream/North Atlantic Current (GS/NAC). We apply a space-time analysis to annual, North Atlantic, upper ocean heat content (OHC) anomalies from the National Center for Atmospheric Research (NCAR), Community Earth System Model (CESM) long pre-industrial control run. The analysis reveals decadal anomalies associated with two patterns: a dipole centered on the GS/NAC, in the western side of the Basin that oscillates quasi-regularly, reversing its sign every of 6 to 7 years. The second pattern is centered in the eastern side of the basin and lags the first by about 5 years, implying that heat is transported between the subtropical and subpolar gyres. Analysis of surface windstress anomalies connected with these OHC fluctuations implies that the latter are forced by stochastic atmospheric variability. Further analysis compares the model patterns with observations to determine their relevance and predictability and assesses their response to climate change.</p>

Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Sandro F. Veiga ◽  
Emanuel Giarolla ◽  
Paulo Nobre ◽  
Carlos A. Nobre

Important features of the Atlantic meridional mode (AMM) are not fully understood. We still do not know what determines its dominant decadal variability or the complex physical processes that sustain it. Using reanalysis datasets, we investigated the influence of the North Atlantic Ocean variability on the dominant decadal periodicity that characterizes the AMM. Statistical analyses demonstrated that the correlation between the sea surface temperature decadal variability in the Atlantic Ocean and the AMM time series characterizes the Atlantic multidecadal oscillation (AMO). This corroborates previous studies that demonstrated that the AMO precedes the AMM. A causal inference with a newly developed rigorous and quantitative causality analysis indicates that the AMO causes the AMM. To further understand the influence of the subsurface ocean on the AMM, the relationship between the ocean heat content (0–300 m) decadal variability and AMM was analyzed. The results show that although there is a significant zero-lag correlation between the ocean heat content in some regions of the North Atlantic (south of Greenland and in the eastern part of the North Atlantic) and the AMM, their cause-effect relationship on decadal time scales is unlikely. By correlating the AMO with the ocean heat content (0–300 m) decadal variability, the former precedes the latter; however, the causality analysis shows that the ocean heat content variability drives the AMO, corroborating several studies that point out the dominant role of the ocean heat transport convergence on AMO.


2015 ◽  
Vol 28 (22) ◽  
pp. 8907-8922 ◽  
Author(s):  
Andreas Born ◽  
Juliette Mignot ◽  
Thomas F. Stocker

Abstract Decadal climate variability in the North Atlantic has received increased attention in recent years, because modeling results suggest predictability of heat content and circulation indices several years ahead. However, determining the applicability of these results in the real world is challenging because of an incomplete understanding of the underlying mechanisms. Here, the authors show that recent attempts to reconstruct the decadal variations in one of the dominant circulation systems of the region, the subpolar gyre (SPG), are not always consistent. A coherent picture is partly recovered by a simple conceptual model solely forced by reanalyzed surface air temperatures. This confirms that surface heat flux indeed plays a leading role for this type of variability, as has been suggested in previous studies. The results further suggest that large variations in the SPG correspond to the crossing of a bifurcation point that is predicted from idealized experiments and an analytical solution of the model used herein. Performance of this conceptual model is tested against a statistical stochastic model. Hysteresis and the existence of two stable modes of the SPG circulation shape its response to forcing by atmospheric temperatures. The identification of the essential dynamics and the reduction to a minimal model of SPG variability provide a quantifiable basis and a framework for future studies on decadal climate variability and predictability.


2017 ◽  
Vol 30 (2) ◽  
pp. 477-498 ◽  
Author(s):  
Florian Sévellec ◽  
Alexey V. Fedorov

This study investigates the excitation of decadal variability and predictability of the ocean climate state in the North Atlantic. Specifically, initial linear optimal perturbations (LOPs) in temperature and salinity that vary with depth, longitude, and latitude are computed, and the maximum impact on the ocean of these perturbations is evaluated in a realistic ocean general circulation model. The computations of the LOPs involve a maximization procedure based on Lagrange multipliers in a nonautonomous context. To assess the impact of these perturbations four different measures of the North Atlantic Ocean state are used: meridional volume and heat transports (MVT and MHT) and spatially averaged sea surface temperature (SST) and ocean heat content (OHC). It is shown that these metrics are dramatically different with regard to predictability. Whereas OHC and SST can be efficiently modified only by basin-scale anomalies, MVT and MHT are also strongly affected by smaller-scale perturbations. This suggests that instantaneous or even annual-mean values of MVT and MHT are less predictable than SST and OHC. Only when averaged over several decades do the former two metrics have predictability comparable to the latter two, which highlights the need for long-term observations of the Atlantic meridional overturning circulation in order to accumulate climatically relevant data. This study also suggests that initial errors in ocean temperature of a few millikelvins, encompassing both the upper and deep ocean, can lead to ~0.1-K errors in the predictions of North Atlantic sea surface temperature on interannual time scales. This transient error growth peaks for SST and OHC after about 6 and 10 years, respectively, implying a potential predictability barrier.


2012 ◽  
Vol 25 (7) ◽  
pp. 2421-2439 ◽  
Author(s):  
Helene R. Langehaug ◽  
Iselin Medhaug ◽  
Tor Eldevik ◽  
Odd Helge Otterå

Abstract In the present study the decadal variability in the strength and shape of the subpolar gyre (SPG) in a 600-yr preindustrial simulation using the Bergen Climate Model is investigated. The atmospheric influence on the SPG strength is reflected in the variability of Labrador Sea Water (LSW), which is largely controlled by the North Atlantic Oscillation, the first mode of the North Atlantic atmospheric variability. A combination of the amount of LSW, the overflows from the Nordic seas, and the second mode of atmospheric variability, the East Atlantic Pattern, explains 44% of the modeled decadal variability in the SPG strength. A prior increase in these components leads to an intensified SPG in the western subpolar region. Typically, an increase of one standard deviation (std dev) of the total overflow (1 std dev = 0.2 Sv; 1 Sv ≡ 106 m3 s−1) corresponds to an intensification of about one-half std dev of the SPG strength (1 std dev = 2 Sv). A similar response is found for an increase of one std dev in the amount of LSW, and simultaneously the strength of the North Atlantic Current increases by one-half std dev (1 std dev = 0.9 Sv).


2020 ◽  
Author(s):  
Laura Jackson ◽  
Clotilde Dubois ◽  
Gael Forget ◽  
Keith Haines ◽  
Matt Harrison ◽  
...  

<p>The observational network around the North Atlantic has improved significantly over the last few decades with the advent of Argo and satellite observations, and the more recent efforts to monitor the Atlantic Meridional Overturning Circulation (AMOC) using arrays such as RAPID and OSNAP. These have shown decadal timescale changes across the North Atlantic including in heat content, heat transport and the circulation. </p><p>However there are still significant gaps in the observational coverage, and significant uncertainties around some observational products. Ocean reanalyses integrate the observations with a dynamically consistent ocean model and are potentially tools that can be used to understand the observed changes. However the suitability of the reanalyses for the task must also be assessed.<br>We use an ensemble of global ocean reanalyses in comparison with observations in order to examine the mean state and interannual-decadal variability of the North Atlantic ocean since 1993. We assess how well the reanalyses are able to capture different processes and whether any understanding can be inferred. In particular we look at ocean heat content, transports, the AMOC and gyre strengths, water masses and convection. </p><p> </p>


Author(s):  
Harry J Dowsett ◽  
Mark A Chandler ◽  
Marci M Robinson

The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO 2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.


2021 ◽  
Author(s):  
Teresa Carmo-Costa ◽  
Roberto Bilbao ◽  
Pablo Ortega ◽  
Ana Teles-Machado ◽  
Emanuel Dutra

Abstract This study investigates trends, variability and predictive skill of the upper ocean heat content (OHC) in the North Atlantic basin. This is a region where strong decadal variability superimposes the externally forced trends, introducing important differences in the local warming rates, and leading in the case of the Central Subpolar North Atlantic to an overall long-term cooling. Our analysis aims to better understand these regional differences, by investigating how internal and forced variability contribute to local trends, exploring also their role on the local prediction skill. The analysis combines the study of three ocean reanalyses to document the uncertainties related to observations, with two sets of CMIP6 experiments performed with the global coupled climate model EC-Earth3: a historical ensemble to characterise the forced signals; and a retrospective decadal prediction system, to additionally characterise the contributions from internal climate variability. Our results show that internal variability is essential to understand the spatial pattern of North Atlantic OHC trends, contributing decisively to the local trends and providing high levels of predictive skill in the Eastern Subpolar North Atlantic and the Irminger and Iceland Seas, and to a lesser extent in the Labrador Sea. Skill and trends in other areas like the Subtropical North Atlantic, or the Gulf Stream Extension are mostly externally forced. Large observational and modeling uncertainties affect the trends and interannual variability in the Central Subpolar North Atlantic, the only region exhibiting a cooling during the study period, uncertainties that might explain the very poor local predictive skill.


2012 ◽  
Vol 69 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Edwin K. Schneider ◽  
Meizhu Fan

Abstract In Part I of this study, the atmospheric weather noise for 1951–2000 was inferred from an atmospheric analysis in conjunction with SST-forced AGCM simulations and used to force interactive ensemble coupled GCM simulations of the North Atlantic SST variability. Here, results from those calculations are used in conjunction with a simple stochastically forced coupled model of the decadal time scale North Atlantic tripole SST variability to examine the mechanisms associated with the tripole SST variability. The diagnosed tripole variability is found to be characterized by damped, delayed oscillator dynamics, similar to what has been found by other investigators. However, major differences here, affecting the signs of two of the crucial parameters of the simple model, are that the atmospheric heat flux feedback damps the tripole pattern and that a counterclockwise intergyre gyre-like circulation enhances the tripole pattern. Delayed oscillator dynamics are still obtained because the sign of the dynamically important parameter, proportional to the product of these two parameters, is unchanged. Another difference with regard to the dynamical processes included in the simple model is that the major contribution to the ocean’s dynamical heat flux response to the weather noise wind stress is through a delayed modulation of the mean gyres, rather than from the simultaneous intergyre gyre response. The power spectrum of a revised simple model forced by white noise has a less prominent decadal peak using the parameter values and dynamics diagnosed here than in previous investigations. Decadal time scale retrospective predictions made with this version of the simple model are no better than persistence.


Sign in / Sign up

Export Citation Format

Share Document