Surface rupture and landscape response within the core of the great Mw 8.3 1934 earthquake mesoseismal area: the case of the Khutti Khola

Author(s):  
Magali Riesner ◽  
Laurent Bollinger ◽  
Magali Rizza ◽  
Yann Klinger ◽  
Soma Nath Sapkota ◽  
...  

<p>Great earthquakes generated along the Himalayan mega-thrust plate boundary have been shown to rupture the surface. The Mw 8.3 1934 Bihar-Nepal earthquake is one of these major seismotectonic events. Previous studies focused on sites located at the western end of the fault trace concluded that the surface rupture associated with this earthquake is still locally preserved. Here we document a new site, along the Khutti Khola rivercut, in the core of the mesoseismal area. The effects of the earthquake in that area were described as cataclysmic, generating massive damages, landslides blocking one of the local rivers at 4 sites. The Khutti river cuts the frontal range, incising a 4 m- high cumulated scarp exposed along a 19 m-long stretch of Siwaliks claystone-sandstone and alluvial deposits. A detailed study of the river cut revealed the presence of faults emplacing Siwaliks over quaternary alluvials. These units are sealed by a colluvial wedge and wash as well as by recent underformed alluvials. The C14 radiocarbon analyses of 10 detrital charcoals collected reveal that the last surface-rupturing event at that site occurred after the 17<sup>th</sup> century and prior to the post-bomb deposition of the young alluvials. The only historical earthquake known within that period is the 1934 earthquake, inferring that for this event the rupture reached the surface at that site. The rupture was followed by rapid aggradation and sealed by ~2 meters of sediments. In addition to being another rare example for the preservation of the 1934 earthquake, these observations demonstrate that, despite their magnitude and potential surface rupture, the study of the great Himalayan paleo-earthquakes are still challenging however necessary to constrain their lateral extent.</p>

2021 ◽  
Vol 58 ◽  
pp. 200
Author(s):  
Dimitrios Galanakis ◽  
Sotiris Sboras ◽  
Garyfalia Konstantopoulou ◽  
Markos Xenakis

On March 3, 2021, a strong (Mw6.3) earthquake occurred near the towns of Tyrnavos and Elassona. One day later (March 4), a second strong (Mw6.0) earthquake occurred just a few kilometres toward the WNW. The aftershock spatial distribution and the focal mechanisms revealed NW-SE-striking normal faulting. The focal mechanisms also revealed a NE-SW oriented extensional stress field, different from the orientation we knew so far (ca. N-S). The magnitude and location of the two strongest shocks, and the spatiotemporal evolution of the sequence, strongly suggest that two adjacent fault segments were ruptured respectively. The sequence was followed by several coseismic ground deformational phenomena, such as landslides/rockfalls, liquefaction and ruptures. The landslides and rockfalls were mostly associated with the ground shaking. The ruptures were observed west of the Titarissios River, near to the Quaternary faults found by bore-hole lignite investigation. In the same direction, a fault scarp separating the alpidic basement from the alluvial deposits of the Titarissios valley implies the occurrence of a well-developed fault system. Some of the ground ruptures were accompanied by extensive liquefaction phenomena. Others cross-cut reinforced concrete irrigation channels without changing their direction. We suggest that this fault system was partially reactivated, as a secondary surface rupture, during the sequence as a steeper splay of a deeper low-to-moderate angle normal fault.


Author(s):  
John H. Doveton

Many years ago, the classification of sedimentary rocks was largely descriptive and relied primarily on petrographic methods for composition and granulometry for particle size. The compositional aspect broadly matches the goals of the previous chapter in estimating mineral content from petrophysical logs. With the development of sedimentology, sedimentary rocks were now considered in terms of the depositional environment in which they originated. Uniformitarianism, the doctrine that the present is the key to the past, linked the formation of sediments in the modern day to their ancient lithified equivalents. Classification was now structured in terms of genesis and formalized in the concept of “facies.” A widely quoted definition of facies was given by Reading (1978) who stated, “A facies should ideally be a distinctive rock that forms under certain conditions of sedimentation reflecting a particular process or environment.” This concept identifies facies as process products which, when lithified in the subsurface, form genetic units that can be correlated with well control to establish the geological architecture of a field. The matching of facies with modern depositional analogs means that dimensional measures, such as shape and lateral extent, can be used to condition reasonable geomodels, particularly when well control is sparse or nonuniform. Most wells are logged rather than cored, so that the identification of facies in cores usually provides only a modicum of information to characterize the architecture of an entire field. Consequently, many studies have been made to predict lithofacies from log measurements in order to augment core observations in the development of a satisfactory geomodel that describes the structure of genetic layers across a field. The term “electrofacies” was introduced by Serra and Abbott (1980) as a way to characterize collective associations of log responses that are linked with geological attributes. They defined electrofacies to be “the set of log responses which characterizes a bed and permits it to be distinguished from the others.” Electrofacies are clearly determined by geology, because physical properties of rocks. The intent of electrofacies identification is generally to match them with lithofacies identified in the core or an outcrop.


Author(s):  
Robert M. Langridge ◽  
Pilar Villamor ◽  
Jamie D. Howarth ◽  
William F. Ries ◽  
Kate J. Clark ◽  
...  

ABSTRACT The Alpine fault is a high slip-rate plate boundary fault that poses a significant seismic hazard to southern and central New Zealand. To date, the strongest paleoseismic evidence for the onshore southern and central sections indicates that the fault typically ruptures during very large (Mw≥7.7) to great “full-section” earthquakes. Three paleoseismic trenches excavated at the northeastern end of its central section at the Toaroha River (Staples site) provide new insights into its surface-rupture behavior. Paleoseismic ruptures in each trench have been dated using the best-ranked radiocarbon dating fractions, and stratigraphically and temporally correlated between each trench. The preferred timings of the four most recent earthquakes are 1813–1848, 1673–1792, 1250–1580, and ≥1084–1276 C.E. (95% confidence intervals using OxCal 4.4). These surface-rupture dates correlate well with reinterpreted timings of paleoearthquakes from previous trenches excavated nearby and with the timing of shaking-triggered turbidites in lakes along the central section of the Alpine fault. Results from these trenches indicate the most recent rupture event (MRE) in this area postdates the great 1717 C.E. Alpine fault rupture (the most recent full-section rupture of the southern and central sections). This MRE probably occurred within the early nineteenth century and is reconciled as either: (a) a “partial-section” rupture of the central section; (b) a northern section rupture that continued to the southwest; or (c) triggered slip from a Hope-Kelly fault rupture at the southwestern end of the Marlborough fault system (MFS). Although, no single scenario is currently favored, our results indicate that the behavior of the Alpine fault is more complex in the north, as the plate boundary transitions into the MFS. An important outcome is that sites or towns near fault intersections and section ends may experience strong ground motions more frequently due to locally shorter rupture recurrence intervals.


2000 ◽  
Vol 6 (4) ◽  
pp. 353-382
Author(s):  
Azm S. Al-Homoud

Abstract The geological structures associated with the site of the 55 million m 3 Karameh embankment dam constructed in the Jordan Valley and the tectonic effects on dam foundation and reservoir margins were reviewed. The dam crosses the strike-slip fault of the Jordan Valley Rift Zone. Trace evidence of the fault indicates a displacement of 8 to 15 m over a rupture length of some 130 km, which probably took place several centuries ago. Earthquakes with Richter magnitudes as great as 7.8 have occurred along the Jordan Valley Fault. Deterministic studies by Tapponnier (1992) indicated that the dam design should incorporate the possibility of a 7.8 event, a maximum horizontal rupture displacement on the fault of 10 m and a design peak ground acceleration (PGA) of 0.74 g at the site of the dam. These values are consistent with those which would be used in the USA for a similar case. However, the dam was actually designed by a consultant and constructed for a PGA of about a quarter of this value, based on seismic hazard analysis following guidelines of the International Committee on Large Dams (ICOLD) (1989). Moreover, the dam was designed for displacements of 6 m horizontal and 2 m vertically. Liquefiable sand layers were found in the dam foundation. A PGA of 0.50 g will trigger liquefaction of the sand layers in the dam foundation which would be expected to result in a crest settlement of 4.4 m. Slope stability analysis indicated deep failure planes in the foundation zone. The excavation of loose materials from under the dam foundation has not precluded the possibility of liquefaction occurring under the expected earthquake. Field mapping of geological features during the dam foundation excavation and construction revealed that: a) the most likely location of the Jordan Valley fault is in the area where the Wadi Mallaha stream crosses the dam axis, b) zones of en echelon type open fissures have been defined in the laminates sub-parallel to the Jordan Valley Fault Zone, c) at the Wadi Mallaha stream bed a parallel zone of faulting and warping of the Lisan Formation was identified, and d) the alignment is clearly confirmed by the exposure immediately upstream of the core at Ch 1375. The main wrench fault zone crosses the embankment footprint (upstream to downstream approximately) and reaches the surface around Ch 1375. The critical safety elements of the embankment are the core, the downstream fine filter, the chimney drain and the drainage blanket. To resist large earthquake events safely, the following safety measures should be implemented: 1. A freeboard of 7.0 m instead of the 5.0 m constructed. 2. The foundation of the dam should be stabilized against liquefaction. 3. The embankment internal zoning should be designed to accommodate damage resulting from earthquake events with a magnitude of 7.8. 4. The foundation needs relief measures downstream to lower the pore pressure. This paper describes the measures taken during construction as overall defense against future fault movements through a wide plastic core, an extensive upstream blanket, a 5.0-m thick downstream chimney filter and drain zones, a 5-m freeboard and an upstream crack stopper zone which may be critical for normal faults with a lateral extension component. The geological determination of the main wrench fault alignment resulted in the addition of an extra 2-m width to each of the already wide chimney filter and drain zones. In order to reduce potential seepage, local cut-off trenches or slush grouting were used for treatment of any open fissures at the upstream edge of the external blanket and the right bank ridge. The scale and scope of this dam and inherent engineering geological hazards are unprecedented. The design is considered deficient. This paper documents serious safety issues with the dam. The constructed dam presents serious safety risks and represents a case history of a disaster waiting to happen.


2019 ◽  
Vol 110 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Kristofer T. Hornsby ◽  
Ashley R. Streig ◽  
Scott E. K. Bennett ◽  
Jefferson C. Chang ◽  
Shannon Mahan

ABSTRACT The Meers fault (Oklahoma) is one of few seismogenic structures with evidence for Holocene surface rupture in the stable continental region of North America. The 37-kilometer-long southeast section of the full 54-kilometer-long Meers fault is interpreted to be Holocene active. The 17-kilometer-long northwest section is considered Quaternary active, but not Holocene active. We reevaluate surface expression and earthquake timing of the northwest Meers fault to improve seismic source characterization. We use airborne light detection and ranging and historical stereopaired aerial photos to evaluate the fault scarp and local fault-zone geomorphology. In the northwest, complex surface deformation includes fault splays, subtle monoclinal warping, and a minor change in fault strike. We interpret that the along-strike transition from surface faulting on the southeast Meers fault to surface folding on the northwest Meers fault occurs at the lithologic contact between Permian Post Oak conglomerate and Hennessey shale. We excavated a paleoseismic trench to evaluate the timing of surface-deforming earthquakes on the northwest section of the fault. The excavation revealed weathered Permian Hennessey shale and an ∼1–2-meter-thick veneer of Holocene alluvial deposits that were progressively deformed during two surface-folding earthquakes likely related to blind fault rupture beneath the site. Repeated onlapping to overlapping stratigraphic sequences and associated unconformities are intimately related to folding events along the monocline. OxCal paleoearthquake age modeling indicates that earthquakes occurred 4704–3109 yr B.P. and 5955–4744 yr B.P., and that part of the northwest section of the Meers fault is Holocene active. We find the Holocene-active section of the Meers fault should be lengthened 6.1 km to the northwest, to a total Holocene-active fault length of 43 km. Empirical scaling relationships between surface rupture length and magnitude reveal that the fault could generate an Mw 7.0 earthquake.


2019 ◽  
Vol 25 (4) ◽  
pp. 318-330 ◽  
Author(s):  
Julia A. Yeakley ◽  
Abdul Shakoor ◽  
William Johnson

ABSTRACT We used previously obtained marine geophysical and geotechnical data for the proposed Galsi pipeline route from Algeria to Sardinia to analyze the buried salt distribution, rates of fault displacements, and frequency and lateral extent of submarine slope failures. Crossing the convergent African/Nubian–European plate boundary, the southern section of the pipeline route traverses continental shelves and slopes of Algeria and Sardinia as well as the Algerian abyssal plain of the western Mediterranean. Deeply buried Messinian-aged salt is present throughout this area. Being less dense and more buoyant than the overburden sediment, the salt tends to flow upward to form diapiric structures that, in turn, result in the formation of faults and landslides in the overlying sediment. Measured offsets from seismic profiles of different resolutions were compared with predicted sediment age at depth of each offset, yielding an average rate of fault displacement of 1.5 cm/kiloyear (ky). The highest rates of displacement are along the Cagliari slope near Sardinia (2.5-2.7 cm/ky) and near the convergent plate boundary (2.3 cm/ky). Utilizing the same geophysical data, the frequency and lateral extent of submarine slope failures in the study area can also be linked to the distribution of salt and the influence of salt tectonics. Turbidity currents and hyperpycnal flows are present within the Algerian basin, whereas local debris flows, landslide runouts, and channelized debris flows are present along the Sardinian slope. The low sedimentation rates, determined in this study, suggest that the most recent slope failures related to salt tectonics occurred more than 12,000 years ago.


2005 ◽  
Vol 21 (1_suppl) ◽  
pp. 113-123 ◽  
Author(s):  
Khaled Hessami ◽  
Hadi Tabassi ◽  
Koji Okumura ◽  
Mohammad R. Abbassi ◽  
Takashi Azuma

The Bam fault zone is a major active fault zone in southeastern Iran. Geomorphic evidence indicates that it has been responsible for repeated faulting events since the late Pleistocene. The 26 December 2003 Bam earthquake was associated with a 14 km fresh surface rupture trending north-south along the preexisting Bam fault zone. However, an en echelon rupture pattern trending N 15° E developed in the surface of alluvial deposits 5 km west of the Bam fault, in an area where no fault trace is visible in the geomorphology. The slip along the surface ruptures ranged between 0.5 and 20 cm. Rather than being a direct manifestation of the earthquake fault that does not surface, the fresh surface ruptures associated with the Bam earthquake are secondary structures such as synthetic (Reidel) shears and mole tracks, which indicate right-lateral motion along the Bam fault zone. This is compatible with both the focal mechanism solutions of the earthquake and fault displacements during the late Pleistocene. Fresh surface structures indicate areas of dispersed strain not recognized on SAR interferometry.


2003 ◽  
Vol 90 (4) ◽  
pp. 2367-2377 ◽  
Author(s):  
Shinji Ohara ◽  
Fred A. Lenz

We explored the region of human thalamic somatic sensory nucleus (ventral caudal, Vc) with threshold microstimulation during stereotactic procedures for the treatment of tremor (124 thalami, 116 patients). Warm sensations were evoked more frequently in the posterior region than in the core. Proportion of sites where microstimulation evoked cool and pain sensations was not different between the core and the posterior region. In the core, sites where both thermal and pain sensations were evoked were distributed similarly in the medial two planes and the lateral plane. In the posterior region, however, warm sensations were evoked more frequently in the lateral plane (10.8%) than in the medial planes (3.9%). No mediolateral difference was found for sites where pain and cool sensations were evoked. The presence of sites where stimulation evoked taste or where receptive and projected fields were located on the pharynx were used as landmarks of a plane located as medial as the posterior part of the ventral medial nucleus (VMpo). Microstimulation in this plane evoked cool, warm, and pain sensations. The results suggest that thermal and pain sensations are processed in the region of Vc as far medial as VMpo. Thermal and pain sensations seem to be mediated by neural elements in a region likely including the core of Vc, VMpo, and other nuclei posterior and inferior to Vc.


2004 ◽  
Vol 36 (4) ◽  
pp. 1560 ◽  
Author(s):  
Σ. B. Παυλίδης ◽  
Σ. Βαλκανιώτης ◽  
A. Γκανάς ◽  
Δ. Κεραμυδάς ◽  
Σ. Σμπόρας

The Northern Gulf of Evoia is a region with an intense neotectonic activity, dominated by characteristic and impressive active faults. The only fault in the region which is connected with a strong historical earthquake, is the Atalanti fault, with the well-known earthquake sequence of 1894. For an accurate mapping of the fault trace, the 1894 surface ruptures investigation and the estimation of the area's seismic hazard, there has been made a detailed geological - neotectonic investigation of the Atalanti city area. The results of this investigation show that the Atalanti fault comprises a 20- 30km long fault zone, divided in at least 4 segments: Atalanti, Kiparissi-Almyra, Tragana-Proskyna, Martino and possibly Larymna segment. The maximum earthquake magnitude is estimated in Msmax=6.8, and the recurrence interval, concerning the same magnitude, for Atalanti fault is larger than 1000 years, possibly even more than 2000 years. Paleoseismological trenching in Agios Konstantinos area excludes the connection of this fault with the earthquake sequence of 1894.


Sign in / Sign up

Export Citation Format

Share Document