Removing spurious inertial instability signals from gravity wave temperature perturbations using spectral filtering methods

Author(s):  
Cornelia Strube ◽  
Manfred Ern ◽  
Peter Preusse ◽  
Martin Riese

<p>Gravity waves are important drivers of dynamic processes in the middle atmosphere, but not the only process that could lead to small-scale perturbations. To analyse atmospheric data for gravity wave signals, gravity wave perturbations have to be separated from atmospheric variability caused by other dynamic processes. Common methods to separate small-scale gravity wave signals from a large-scale background comprise filtering methods in either the horizontal or vertical wavelength domain. Recently, studies showed that vertical wavelengths filtering can mistake other wave-like perturbations, such as inertial instability effects, for gravity wave perturbations.</p><p>We use artificial inertial instability perturbations, global model data and satellite observations to assess different spectral background removal approaches on their ability to separate gravity waves and inertial instabilities. Therefore, we investigate a horizontal background removal, applying a zonal wavenumber filter with additional smoothing of the spectral components in meridional and vertical direction, a sophisticated filter based on 2D time-longitude spectral analysis (see Ern et al., 2011) and a vertical wavelength Butterworth filter.</p><p>We analyse the results for critical thresholds of the vertical wavelength and zonal wavenumber, respectively. Vertical filtering has to remove a part of the gravity wave spectrum in order to eliminate inertial instability remnants from the perturbations. Horizontal filtering, however, separates the data at scales far beyond the expected gravity wave spectrum for the case we investigated. Furthermore, we show that it is possible to effectively separate inertial instabilities perturbations from gravity waves perturbations for infrared limb-sounding satellite profiles using a cutoff zonal wavenumber of 6.</p>

2020 ◽  
Vol 13 (9) ◽  
pp. 4927-4945
Author(s):  
Cornelia Strube ◽  
Manfred Ern ◽  
Peter Preusse ◽  
Martin Riese

Abstract. Gravity waves are important drivers of dynamic processes in particular in the middle atmosphere. To analyse atmospheric data for gravity wave signals, it is essential to separate gravity wave perturbations from atmospheric variability due to other dynamic processes. Common methods to separate small-scale gravity wave signals from a large-scale background are separation methods depending on filters in either the horizontal or vertical wavelength domain. However, gravity waves are not the only process that could lead to small-scale perturbations in the atmosphere. Recently, concerns have been raised that vertical wavelength filtering can lead to misinterpretation of other wave-like perturbations, such as inertial instability effects, as gravity wave perturbations. In this paper we assess the ability of different spectral background removal approaches to separate gravity waves and inertial instabilities using artificial inertial instability perturbations, global model data and satellite observations. We investigate a horizontal background removal (which applies a zonal wavenumber filter with additional smoothing of the spectral components in meridional and vertical direction), a sophisticated filter based on 2D time–longitude spectral analysis (see Ern et al., 2011) and a vertical wavelength Butterworth filter. Critical thresholds for the vertical wavelength and zonal wavenumber are analysed. Vertical filtering has to cut deep into the gravity wave spectrum in order to remove inertial instability remnants from the perturbations (down to 6 km cutoff wavelength). Horizontal filtering, however, removes inertial instability remnants in global model data at wavenumbers far lower than the typical gravity wave scales for the case we investigated. Specifically, a cutoff zonal wavenumber of 6 in the stratosphere is sufficient to eliminate inertial instability structures. Furthermore, we show that for infrared limb-sounding satellite profiles it is possible as well to effectively separate perturbations of inertial instabilities from those of gravity waves using a cutoff zonal wavenumber of 6. We generalize the findings of our case study by examining a 1-year time series of SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) data.


2020 ◽  
Author(s):  
Cornelia Strube ◽  
Manfred Ern ◽  
Peter Preusse ◽  
Martin Riese

Abstract. Gravity waves are important drivers of dynamic processes in particular in the middle atmosphere. To analyse atmospheric data for gravity wave signals it is essential to separate gravity wave perturbations from atmospheric variability due to other dynamic processes. Common methods to separate small-scale gravity wave signals from a large-scale background are separation methods depending on filters in either the horizontal or vertical wavelength domain. However, gravity waves are not the only process that could lead to small-scale perturbations in the atmosphere. Recently, concerns have been raised that vertical wavelengths filtering can lead to misinterpretation of other wave-like perturbations, such as inertial instability effects, as gravity wave perturbations. In this paper we assess the ability of different spectral background removal approaches to separate gravity waves and inertial instabilities using artificial inertial instability perturbations, global model data and satellite observations. We investigate a horizontal background removal, which applies a zonal wavenumber filter with additional smoothing of the spectral components in meridional and vertical direction, a sophisticated filter based on 2D time-longitude spectral analysis (see Ern et al. (2011)) and a vertical wavelength Butterworth filter. Critical thresholds for the vertical wavelength and zonal wavenumber are analysed, respectively. Vertical filtering has to cut deep into the gravity wave spectrum in order to remove inertial instability remnants from the perturbations (down to 6 km cutoff wavelength). Horizontal filtering, however, removes inertial instability remnants in global model data at wavenumbers far lower than the typical gravity wave scales for the case we investigated. Specifically, a cutoff zonal wavenumber of 6 in the stratosphere is sufficient to eliminate inertial instability structures. Furthermore, we show that for infrared limb-sounding satellite profiles, it is possible as well to effectively separate perturbations of inertial instabilities from those of gravity waves using a cutoff zonal wavenumber of 6. We generalize the findings of our case study by examining a one-year time series of SABER data.


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


2019 ◽  
Vol 76 (12) ◽  
pp. 3893-3917 ◽  
Author(s):  
Yoshio Kawatani ◽  
Kevin Hamilton ◽  
Kaoru Sato ◽  
Timothy J. Dunkerton ◽  
Shingo Watanabe ◽  
...  

Abstract Observational studies have shown that, on average, the quasi-biennial oscillation (QBO) exhibits a faster phase progression and shorter period during El Niño than during La Niña. Here, the possible mechanism of QBO modulation associated with ENSO is investigated using the MIROC-AGCM with T106 (~1.125°) horizontal resolution. The MIROC-AGCM simulates QBO-like oscillations without any nonorographic gravity wave parameterizations. A 100-yr integration was conducted during which annually repeating sea surface temperatures based on the composite observed El Niño conditions were imposed. A similar 100-yr La Niña integration was also conducted. The MIROC-AGCM simulates realistic differences between El Niño and La Niña, notably shorter QBO periods, a weaker Walker circulation, and more equatorial precipitation during El Niño than during La Niña. Near the equator, vertical wave fluxes of zonal momentum in the uppermost troposphere are larger and the stratospheric QBO forcing due to interaction of the mean flow with resolved gravity waves (particularly for zonal wavenumber ≥43) is much larger during El Niño. The tropical upwelling associated with the Brewer–Dobson circulation is also stronger in the El Niño simulation. The effects of the enhanced tropical upwelling during El Niño are evidently overcome by enhanced wave driving, resulting in the shorter QBO period. The integrations were repeated with another model version (MIROC-ECM with T42 horizontal resolution) that employs a parameterization of nonorographic gravity waves in order to simulate a QBO. In the MIROC-ECM the average QBO periods are nearly identical in the El Niño and La Niña simulations.


2006 ◽  
Vol 24 (10) ◽  
pp. 2481-2491 ◽  
Author(s):  
V. Deepa ◽  
G. Ramkumar ◽  
B. V. Krishna Murthy

Abstract. The altitude profiles of temperature fluctuations in the stratosphere and mesosphere observed with the Rayleigh Lidar at Gadanki (13.5° N, 79.2° E) on 30 nights during January to March 1999 and 21 nights during February to April 2000 were analysed to bring out the temporal and vertical propagation characteristics of gravity wave perturbations. The gravity wave perturbations showed periodicities in the 0.5–3-h range and attained large amplitudes (4–5 K) in the mesosphere. The phase propagation characteristics of gravity waves with different periods showed upward wave propagation with a vertical wavelength of 5–7 km. The mean flow acceleration computed from the divergence of momentum flux of gravity waves is compared with that calculated from monthly values of zonal wind obtained from RH-200 rockets flights. Thus, the contribution of gravity waves towards the generation of Stratospheric Semi Annual Oscillation (SSAO) is estimated.


2007 ◽  
Vol 576 ◽  
pp. 235-264 ◽  
Author(s):  
FABRICE ARDHUIN ◽  
RUDY MAGNE

A theory is presented that describes the scattering of random surface gravity waves by small-amplitude topography, with horizontal scales of the order of the wavelength, in the presence of an irrotational and almost uniform current. A perturbation expansion of the wave action to order η2 yields an evolution equation for the wave action spectrum, where η = max(h)/H is the small-scale bottom amplitude normalized by the mean water depth. Spectral wave evolution is proportional to the bottom elevation variance at the resonant wavenumbers, representing a Bragg scattering approximation. With a current, scattering results from a direct effect of the bottom topography, and an indirect effect of the bottom through the modulations of the surface current and mean surface elevation. For Froude numbers of the order of 0.6 or less, the bottom topography effects dominate. For all Froude numbers, the reflection coefficients for the wave amplitudes that are inferred from the wave action source term are asymptotically identical, as η goes to zero, to previous theoretical results for monochromatic waves propagating in one dimension over sinusoidal bars. In particular, the frequency of the most reflected wave components is shifted by the current, and wave action conservation results in amplified reflected wave energies for following currents. Application of the theory to waves over current-generated sandwaves suggests that forward scattering can be significant, resulting in a broadening of the directional wave spectrum, while back-scattering should be generally weaker.


2016 ◽  
Vol 16 (14) ◽  
pp. 9381-9397 ◽  
Author(s):  
Lars Hoffmann ◽  
Alison W. Grimsdell ◽  
M. Joan Alexander

Abstract. Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behavior of the Southern Hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003–2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA) Aqua satellite. We introduce a simple and effective approach, referred to as the “two-box method”, to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid-fall to mid-spring (April–October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90 %), followed by the Antarctic Peninsula (76 %), Kerguelen Islands (73 %), Tasmania (70 %), New Zealand (67 %), Heard Island (60 %), and other hotspots (24–54 %). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid-stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60 % with mean absolute errors of 4–5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low-level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation.


2018 ◽  
Vol 11 (1) ◽  
pp. 215-232 ◽  
Author(s):  
Catrin I. Meyer ◽  
Manfred Ern ◽  
Lars Hoffmann ◽  
Quang Thai Trinh ◽  
M. Joan Alexander

Abstract. We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60∘ S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.


2014 ◽  
Vol 7 (10) ◽  
pp. 10771-10827
Author(s):  
Q. T. Trinh ◽  
S. Kalisch ◽  
P. Preusse ◽  
H.-Y. Chun ◽  
S. D. Eckermann ◽  
...  

Abstract. This paper describes a comprehensive observational filter for satellite infrared limb sounding of gravity waves. The filter considers instrument visibility and observation geometry with a high level of accuracy. It contains four main processes: visibility filter, projection of the wavelength on the tangent-point track, aliasing effect, and calculation of the observed vertical wavelength. The observation geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are mimicked. Gravity waves (GWs) simulated by coupling a convective GW source (CGWS) scheme and the gravity wave regional or global ray tracer (GROGRAT) are used as an example for applying the observational filter. Simulated spectra in terms of horizontal and vertical wave numbers (wavelengths) of gravity wave momentum flux (GWMF) are analyzed under the influence of the filter. We find that the most important processes, which have significant influence on the spectrum are: visibility filter (for both SABER and HIRDLS observation geometries), aliasing for SABER and projection on tangent-point track for HIRDLS. The vertical wavelength distribution is mainly affected by the retrieval as part of the "visibility filter" process. In addition, the short-horizontal-scale spectrum may be projected for some cases into a longer horizontal wavelength interval which originally was not populated. The filter largely reduces GWMF values of very short horizontal wavelength waves. The implications for interpreting observed data are discussed.


2018 ◽  
Vol 11 (5) ◽  
pp. 2937-2947 ◽  
Author(s):  
Sabine Wüst ◽  
Thomas Offenwanger ◽  
Carsten Schmidt ◽  
Michael Bittner ◽  
Christoph Jacobi ◽  
...  

Abstract. For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector. OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09∘ N, 11.28∘ E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30∘ N, 13.02∘ E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar. In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.


Sign in / Sign up

Export Citation Format

Share Document