Deciphering the pedogenic and sedimentary archives and long-term landform dynamics to reconstruct complex landscape evolution within a lowland gully catchment over the Holocene

Author(s):  
Vladimir Belyaev ◽  
Ilya Shorkunov ◽  
Ekaterina Garankina ◽  
Evgeniy Konstantinov ◽  
Alexey Rusakov ◽  
...  

<p>For the landscape and climatic conditions of the Eastern European Plain fluvial processes are considered to be the leading geomorphic force during the Holocene. Different hierarchical levels of fluvial landforms from individual hillslopes through gully network to river systems are characterized by various degrees of resilience and relaxation times in response to external impacts of different duration, magnitude and frequency. These characteristics of fluvial systems largely depend on their spatial scale, effective discharges and morphodynamics. Particularly important is understanding of hydrological and geomorphic connectivity at various scales, rates and patterns of hydrological and sedimentary signals propagation and variable sources-pathways-sinks structure of geomorphic cascades under changing climate and land use conditions. It is generally accepted that landscapes of the European plains have experienced alternating periods of relative stability and significant shifts in climate, soil and geomorphological development over the Holocene. A number of studies has been devoted to the Holocene soil and gully erosion processes in Russia and other European countries. Available sources of information on the past erosion and deposition cycles in small catchments include truncated soils, completely or partially infilled gullies, colluvial deposits and lake or reservoir sediments. The highest temporal resolution may be derived from lacustrine sediments. Such geoarchives are characterized by continuous records and often store signals of landscape changes, surface dynamics and vegetation variability (including land use patterns for the historical period) in decadal to seasonal resolution. However, because of the problem of variable fluvial connectivity and associated limited sediment delivery in cascade fluvial systems, quantification of small catchment sediment budget can be a very difficult task requiring thorough consideration of colluvial deposits storages and remobilization.<br>This study presents the new results of multidisciplinary reconstruction of interaction of geomorphic and soil-forming processes, landscape changes and stabilization phases during the Holocene for the Puzbol gully catchment (about 7.95 km2) draining the Borisoglebsk Upland northeastern slope towards the Nero Lake (Yaroslavl Region, central European Russia). The study is based on complex geomorphic, lithostratigraphic and soil surveys by means of detailed field description, photo-fixation, sampling and laboratory analysis of materials from >40 natural or artificial exposures, cores and soil sections. Observed absence of the early Holocene deposits can be explained by generally negative sediment budget of the catchment. It was more likely caused by high-magnitude low-frequency runoff events associated with climatic extremes rather than by dominance of continuous moderate erosion. A series of the middle Holocene 14C dates obtained by analyzing total organic carbon from humic layers of buried soils, lake gyttja and peats provides strong evidence of the synchronous phase of landscape stabilization in both upper and lower parts of the Puzhbol catchment accompanied by active infilling of smaller tributary gullies along its banks at middle part. The upper part of the Puzhbol Gully fan sediment shows clear evidence of synchronous accumulation of agrogenic colluvium and gully alluvium since XIIth Century on top of the Nero Lake terrace deposits.<br>The study is supported by the Russian Science Foundation (Project No. 19-77-10061).</p>

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3481
Author(s):  
Maurizio Lazzari

The main purpose of this Special Issue of Water is to propose on overview of studies and researches, in which the use of GIS is functional to the representation of fluvial geomorphology and river dynamics, linear erosion processes, erosion rates, ancient landscapes reshaped by the fluvial action, flooding areas, and historical anthropic changes of the river landscape and land use [...]


2016 ◽  
Author(s):  
Caitlin T. McManimon ◽  
◽  
David P. Gillikin ◽  
William B. Ouimet ◽  
Michael T. Hren ◽  
...  

2018 ◽  
Vol 15 (9) ◽  
pp. 2909-2930 ◽  
Author(s):  
Sebastian Lienert ◽  
Fortunat Joos

Abstract. A dynamic global vegetation model (DGVM) is applied in a probabilistic framework and benchmarking system to constrain uncertain model parameters by observations and to quantify carbon emissions from land-use and land-cover change (LULCC). Processes featured in DGVMs include parameters which are prone to substantial uncertainty. To cope with these uncertainties Latin hypercube sampling (LHS) is used to create a 1000-member perturbed parameter ensemble, which is then evaluated with a diverse set of global and spatiotemporally resolved observational constraints. We discuss the performance of the constrained ensemble and use it to formulate a new best-guess version of the model (LPX-Bern v1.4). The observationally constrained ensemble is used to investigate historical emissions due to LULCC (ELUC) and their sensitivity to model parametrization. We find a global ELUC estimate of 158 (108, 211) PgC (median and 90 % confidence interval) between 1800 and 2016. We compare ELUC to other estimates both globally and regionally. Spatial patterns are investigated and estimates of ELUC of the 10 countries with the largest contribution to the flux over the historical period are reported. We consider model versions with and without additional land-use processes (shifting cultivation and wood harvest) and find that the difference in global ELUC is on the same order of magnitude as parameter-induced uncertainty and in some cases could potentially even be offset with appropriate parameter choice.


2019 ◽  
Vol 241 ◽  
pp. 558-566 ◽  
Author(s):  
Cecilia María Armas-Herrera ◽  
Fernando Pérez-Lambán ◽  
David Badía-Villas ◽  
José Luis Peña-Monné ◽  
José Antonio González-Pérez ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 339-348
Author(s):  
Vladimir TATARINTSEV ◽  
◽  
Leonid TATARINTSEV ◽  
Alex MATSYURA ◽  
Andrei BONDAROVICH ◽  
...  

The aim of the work was the landscape analysis of agricultural geographical landscapes in the Altai Territory and elaboration of measures aimed at the rational use of agricultural lands. Environmental and landscape (landscape) approach became the main method of scientific research used in the analysis of modern agricultural landscapes. The cartographic method, using GIS-technologies, made it possible to digitize the obtained materials. Synthesized maps of agro-ecological, natural and other zoning of territories are based on topographic, soil, geobotanical and other thematic maps made during land surveying during the field survey. Retrospective analysis, induction and deduction methods,analysis and synthesis, as well as the abstract-logic method were also used in the work. Our main result was the analysis of land use territory for agricultural enterprise in municipal district of Altai Krai. Exploration of lands indicates a pronounced plant-growing specialization of JSC “Pobeda” with a developed animal breeding direction. Limiting factors affecting the rational use of land are natural and climatic conditions, terrain,unsystematic anthropogenic activity and, as a result, the development of erosion processes. The degree of eroded and deflated arable land is more than 50%, hay and pasture lands are also very unstable. Landscapes have been typified, based on which eleven types of land have been identified and their geomorphological description has been carried out. The first five types of land can be used for agricultural production with limitations compensated by crop technology and erosion control measures, the sixth and seventh types require grassing and, in some cases,conservation, the eighth and ninth types can be partially used for pasture and area valorization; the remaining two are not suitable for agricultural use but should be potentially used for planting and forest management. As a result of the presented transformation of agricultural lands, the structure of cultivated areas has changed. The area of arable land decreased by 877 ha, and of pastures by 365 ha,while the area under hayfields, fallow lands, and forest lands increased by 295, 191, and 875 ha respectively. Low-productive lands were withdrawn from agriculture. We suggested that the sustainability of agricultural land use was mainly caused by the reduction of anthropogenic load and increase in ecological equilibrium of the territory.


2007 ◽  
Vol 45 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Peter Jordan ◽  
Olav Slaymaker

ABSTRACTA sediment budget approach is used to investigate the sources, storage, and yield of clastic sediment in Lillooet River watershed, in the southern Coast Mountains. The 3150 km2basin is heavily glacierised, and includes a Quaternary volcanic complex which has been active in the Holocene. The sediment yield has been determined from the rate of advance of the delta at the basin outlet. The floodplain of the main river valley is aggrading as the delta advances, and probably has been through most of the Holocene. Major sediment sources in the basin include glaciers and Neoglacial deposits, debris flows, and landslides in the Quaternary volcanic complex. Soil and bedrock creep, bank erosion of Pleistocene glacial deposits, and sediment from logging and agriculture are probably of minor importance. Estimates of sediment production from these sources explain only about half the observed clastic sediment yield plus the rate of valley aggradation. The unexplained sediment production may be associated with paraglacial sediments exposed by glacial retreat from the nineteenth century Neoglacial maximum; alternatively the frequency of occurrence of intermediate scale debris flows and landslides has been seriously underestimated. Sediment supply is highly episodic over time scales of centuries to thousands of years. Major factors in the temporal pattern of Holocene sediment supply are periods of volcanism, large landslides, the retreat of glaciers from the Neoglacial maximum, and recent river engineering works.


Author(s):  
Tamara Vieira Pascoto ◽  
Simone Andrea Furegatti ◽  
Anna Silvia Palcheco Peixoto

There are several factors that directly or indirectly influence erosion processes. In order to properly understand the behavior of these processes, some factors need to be analyzed together. Determining them wrongly can compromise the study resulting in wrong actions. For this reason, methodologies are always sought to measure them quantitatively and qualitatively in the most accurate possible way. Land use is one of the main factors liable to inaccuracies in its determination. To use this parameter in mapping erosive processes, researchers need to delimit it, classify it, and measure it. In order to better understand the complexity of considering this parameter, the present study analyzed an erosive feature that, although stabilized, has a component in constant development. Initially, a visual analysis indicated the same classification of land use for both conditions, despite having different behaviors, leading to the need for a detailed analysis. Such analysis comprised a historical survey through aerial photos and interviews with residents and employees of the city hall about the evolution of the feature from 2008 to 2019. It also included the analysis of other influencing factors that could be responsible for this difference in behavior in the area. Two different traces of the contribution areas of the gully and branch were also considered. One considering only aerial images, and the other considering the knowledge acquired during the research about the evolution of the feature. It was concluded, then, that an analysis of the use-only occupation factor based on aerial images can accentuate the inaccuracy of the measurement of this factor.


Author(s):  
David Beresford-Jones

This book began with the archaeology of the Ullujaya and Samaca basins of the lower Ica Valley on the south coast of Peru. The archaeological investigations described here were undertaken to answer the following questions. Were these basins ever significantly more productive and vegetated landscapes? If so, when and how did change take place, and why? And how did these ecological and landscape changes correlate with cultural ones? The second part of the book conducted a thorough review of the botanical and agroforestry literature, together with the researchers' own observations, on the ecological keystone species of the region, the huarango — a tree of the genus Prosopis — to show how important a role this genus plays in the desert ecosystem of the south coast of Peru. This concluding chapter seeks to achieve a synthesis between these two parts to offer answers to those aforementioned questions posed by today's austere landscape of the lower Ica Valley. In so doing, it proposes a model for geomorphological, ecological, and land-use changes through time for the basins of the lower Ica Valley. It also aims to relate this model to cultural trajectories.


Sign in / Sign up

Export Citation Format

Share Document