Ionosphere research with a nanosatellite’s radio wave spectrometer

Author(s):  
Esa Kallio ◽  
Ari-Matti Harri ◽  
Anita Aikio ◽  
Arno Alho ◽  
Mathias Fontell ◽  
...  

<p>The Suomi100 nanosatellite was launched on Dec. 3, 2018 (http://www.suomi100satelliitti.fi/eng). The 1 Unit (10 cm x 10 cm x 10 cm) polar orbit cubesat will perform geospace, ionosphere and arctic region research with a white light camera and a radio wave spectrometer instrument which operates in the 1-10 MHz frequency range.</p><p>Suomi 100 satellite type of nanosatellite, so called CubeSat, provides a cost effective possibility to provide in-situ measurements in the ionosphere. Especially, combined CubeSat observations with ground-based observations give a new view on auroras and associated electromagnetic phenomena. Especially joint CubeSat – ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere.</p><p>Increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionosphere model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatio-temporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests.</p><p>We present computational simulation and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat which radio instrument measures HF and MF waves. We introduce 3D simulations, which have been developed to study the propagation of the radio waves, both ground generated man-made radio waves and space formed space weather related waves, through the 3D arctic ionosphere with a 3D ray tracing simulation. We also introduce the Suomi100 CubeSat mission and its observations.</p>

2016 ◽  
Author(s):  
Libo Wang ◽  
Peter Toose ◽  
Ross Brown ◽  
Chris Derksen

Abstract. This study presents an algorithm for detecting winter melt events in seasonal snow cover based on temporal variations in the brightness temperature difference between 19 and 37 GHz from satellite passive microwave measurements. An advantage of the passive microwave approach is that it is based on the physical presence of liquid water in the snowpack, which may not be the case with melt events inferred from surface air temperature data. The algorithm is validated using in situ observations from weather stations, snowpit surveys, and a surface-based passive microwave radiometer. The results of running the algorithm over the pan-Arctic region (north of 50º N) for the 1988–2013 period show that winter melt days are relatively rare averaging less than 7 melt days per winter over most areas, with higher numbers of melt days (around two weeks per winter) occurring in more temperate regions of the Arctic (e.g. central Quebec and Labrador, southern Alaska, and Scandinavia). The observed spatial pattern was similar to winter melt events inferred with surface air temperatures from ERA-interim and MERRA reanalysis datasets. There was little evidence of trends in winter melt frequency except decreases over northern Europe attributed to a shortening of the duration of the winter period. The frequency of winter melt events is shown to be strongly correlated to the duration of winter period. This must be taken into account when analyzing trends to avoid generating false increasing trends from shifts in the timing of the snow cover season.


1994 ◽  
Vol 12 (4) ◽  
pp. 316-332 ◽  
Author(s):  
T. R. Robinson

Abstract. Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.


2021 ◽  
Vol 13 (21) ◽  
pp. 4225
Author(s):  
Igor Krasheninnikov ◽  
Givi Givishvili

Based on the results of mathematical modeling, we consider the possibility to estimate the plasma frequency F2 layer maximum of the polar ionosphere (critical frequency, foF2) using frequency-sweeping radiation from a highly elliptical spacecraft orbit in the Arctic zone. Our modeling concerning the energy problem of radio sensing consisted of analyzing wave field parameters, received field strength, and SNR on two radio paths with the distances 1900 and 2500 km along the earth’s surface, with the satellite height varying from 10,000 to 30,000 km. Radio path orientations were selected to be close to the classical limit cases of radio wave propagation in the anisotropic ionospheric plasma: quasi-longitudinal approximation and, to a large extent, the quasi-transversal one for the quiet midday and midnight conditions. As a result of these simulations and following specific spacecraft conditions, working with an optimal probing signal was proposed for the appropriate emission power for the onboard transmitter. In the inverse problem of radio sounding of an ionized media, common mathematical inaccuracy in foF2 calculated from the transionogram, frequency dependence of the probing signals magneto-ionic group delay, was estimated. Considering and founding a possible realization of the method, physical prerequisites are discussed based on the experimental data of radio waves passing the 16,000 km long radio path for Moscow–Antarctica (UAS Vernadsky).


Georesursy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 107-124 ◽  
Author(s):  
Vladimir I. Vyalov ◽  
Alexandr B. Gurevich ◽  
Galina M. Volkova ◽  
Darya A. Skiba ◽  
Evgeny P. Shishov ◽  
...  

Rational and cost-effective development of the richest hydrocarbon resources of the Arctic region of Russia is impossible without the resumption of solid fuel production. On the Arctic coast of Russia there is the largest base of coking coals of valuable ranks, which requires the study and active development in the framework of the overall strategy of development of fuel and energy resources of the Russian North and, in general, the fuel and energy complex of the country. The most valuable in quality and properties deposits and basins of coking coals of the Arctic zone of Russia are considered. Among them are the Taimyr, Tunguska, Zyryanka and Bering basins. The features of coal-bearing, matter-petrographic composition and quality, the basic properties of coal of basins and promising fields, their resource and geological characteristics are given. Recommendations for their further study are given, the prospects of their development and transportation of coal along the Northern Passage are discussed.


Polar Science ◽  
2020 ◽  
pp. 100553
Author(s):  
Shinji Morimoto ◽  
Daisuke Goto ◽  
Shohei Murayama ◽  
Ryo Fujita ◽  
Yasunori Tohjima ◽  
...  

2016 ◽  
Vol 10 (6) ◽  
pp. 2589-2602 ◽  
Author(s):  
Libo Wang ◽  
Peter Toose ◽  
Ross Brown ◽  
Chris Derksen

Abstract. This study presents an algorithm for detecting winter melt events in seasonal snow cover based on temporal variations in the brightness temperature difference between 19 and 37 GHz from satellite passive microwave measurements. An advantage of the passive microwave approach is that it is based on the physical presence of liquid water in the snowpack, which may not be the case with melt events inferred from surface air temperature data. The algorithm is validated using in situ observations from weather stations, snow pit measurements, and a surface-based passive microwave radiometer. The validation results indicate the algorithm has a high success rate for melt durations lasting multiple hours/days and where the melt event is preceded by warm air temperatures. The algorithm does not reliably identify short-duration events or events that occur immediately after or before periods with extremely cold air temperatures due to the thermal inertia of the snowpack and/or overpass and resolution limitations of the satellite data. The results of running the algorithm over the pan-Arctic region (north of 50° N) for the 1988–2013 period show that winter melt events are relatively rare, totaling less than 1 week per winter over most areas, with higher numbers of melt days (around two weeks per winter) occurring in more temperate regions of the Arctic (e.g., central Québec and Labrador, southern Alaska and Scandinavia). The observed spatial pattern is similar to winter melt events inferred with surface air temperatures from the ERA-Interim (ERA-I) and Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis datasets. There was little evidence of trends in winter melt event frequency over 1988–2013 with the exception of negative trends over northern Europe attributed to a shortening of the duration of the winter period. The frequency of winter melt events is shown to be strongly correlated to the duration of winter period. This must be taken into account when analyzing trends to avoid generating false positive trends from shifts in the timing of the snow cover season.


2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


Author(s):  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Sergey Azarov ◽  
Sergey Azarov ◽  
Ekaterina Balashova ◽  
...  

Working with satellite data, has long been an issue for users which has often prevented from a wider use of these data because of Volume, Access, Format and Data Combination. The purpose of the Storm Ice Oil Wind Wave Watch System (SIOWS) developed at Satellite Oceanography Laboratory (SOLab) is to solve the main issues encountered with satellite data and to provide users with a fast and flexible tool to select and extract data within massive archives that match exactly its needs or interest improving the efficiency of the monitoring system of geophysical conditions in the Arctic. SIOWS - is a Web GIS, designed to display various satellite, model and in situ data, it uses developed at SOLab storing, processing and visualization technologies for operational and archived data. It allows synergistic analysis of both historical data and monitoring of the current state and dynamics of the "ocean-atmosphere-cryosphere" system in the Arctic region, as well as Arctic system forecasting based on thermodynamic models with satellite data assimilation.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


2018 ◽  
Vol 35 (4) ◽  
pp. 110-113
Author(s):  
V. A. Tupchienko ◽  
H. G. Imanova

The article deals with the problem of the development of the domestic nuclear icebreaker fleet in the context of the implementation of nuclear logistics in the Arctic. The paper analyzes the key achievements of the Russian nuclear industry, highlights the key areas of development of the nuclear sector in the Far North, and identifies aspects of the development of mechanisms to ensure access to energy on the basis of floating nuclear power units. It is found that Russia is currently a leader in the implementation of the nuclear aspect of foreign policy and in providing energy to the Arctic region.


Sign in / Sign up

Export Citation Format

Share Document