Assessing canopy temperature-based water stress indices for soybeans under subhumid conditions

Author(s):  
Angela Morales Santos ◽  
Reinhard Nolz

<p>Sustainable irrigation water management is expected to accurately meet crop water requirements in order to avoid stress and, consequently, yield reduction, and at the same time avoid losses of water and nutrients due to deep percolation and leaching. Sensors to monitor soil water status and plant water status (in terms of canopy temperature) can help planning irrigation with respect to time and amounts accordingly. The presented study aimed at quantifying and comparing crop water stress of soybeans irrigated by means of different irrigation systems under subhumid conditions.</p><p>The study site was located in Obersiebenbrunn, Lower Austria, about 30 km east of Vienna. The region is characterized by a mean temperature of 10.5°C with increasing trend due to climate change and mean annual precipitation of 550 mm. The investigations covered the vegetation period of soybean in 2018, from planting in April to harvest in September. Measurement data included precipitation, air temperature, relative humidity and wind velocity. The experimental field of 120x120 m<sup>2</sup> has been divided into four sub-areas: a plot of 14x120 m<sup>2</sup> with drip irrigation (DI), 14x120 m<sup>2</sup> without irrigation (NI), 36x120 m<sup>2</sup> with sprinkler irrigation (SI), and 56x120 m<sup>2</sup> irrigated with a hose reel boom with nozzles (BI). A total of 128, 187 and 114 mm of water were applied in three irrigation events in the plots DI, SI and BI, respectively. Soil water content was monitored in 10 cm depth (HydraProbe, Stevens Water) and matric potential was monitored in 20, 40 and 60 cm depth (Watermark, Irrometer). Canopy temperature was measured every 15 minutes using infrared thermometers (IRT; SI-411, Apogee Instruments). The IRTs were installed with an inclination of 45° at 1.8 m height above ground. Canopy temperature-based water stress indices for irrigation scheduling have been successfully applied in arid environments, but their use is limited in humid areas due to low vapor pressure deficit (VPD). To quantify stress in our study, the Crop Water Stress Index (CWSI) was calculated for each plot and compared to the index resulting from the Degrees Above Canopy Threshold (DACT) method. Unlike the CWSI, the DACT method does not consider VPD to provide a stress index nor requires clear sky conditions. The purpose of the comparison was to revise an alternative method to the CWSI that can be applied in a humid environment.</p><p>CWSI behaved similar for the four sub-areas. As expected, CWSI ≥ 1 during dry periods (representing severe stress) and it decreased considerably after precipitation or irrigation (representing no stress). The plot with overall lower stress was BI, producing the highest yield of the four plots. Results show that DACT may be a more suitable index since all it requires is canopy temperature values and has strong relationship with soil water measurements. Nevertheless, attention must be paid when defining canopy temperature thresholds. Further investigations include the development and test of a decision support system for irrigation scheduling combining both, plant-based and soil water status indicators for water use efficiency analysis.</p>

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 492
Author(s):  
Krista C. Shellie ◽  
Bradley A. King

Precision irrigation of wine grape is hindered by the lack of an automated method for monitoring vine water status. The objectives of this study were to: Validate an automated model for remote calculation of a daily crop water stress index (CWSI) for the wine grape (Vitis vinifera L.) cultivar Malbec and evaluate its suitability for use in irrigation scheduling. Vines were supplied weekly with different percentages of evapotranspiration-based estimated water demand (ETc) over four growing seasons. In the fifth growing season, different daily CWSI threshold values were used to trigger an irrigation event that supplied 28 mm of water. All three indicators of vine water status (CWSI, midday leaf water potential (Ψlmd), and juice carbon isotope ratio (δ13C)) detected an increase in stress severity as the irrigation amount decreased. When the irrigation amount decreased from 100% to 50% ETc, 70% to 35% ETc, or the daily CWSI threshold value increased from 0.4 to 0.6, berry fresh weight and juice titratable acidity decreased, juice δ13C increased, the weekly CWSI increased, and Ψlmd decreased. Under the semi-arid conditions of this study, utilizing a daily CWSI threshold for irrigation scheduling reduced the irrigation amount without compromising the yield or changes in berry composition and remotely provided automated decision support for managing water stress severity in grapevine.


2020 ◽  
Vol 63 (5) ◽  
pp. 1217-1231
Author(s):  
Bruno P. Lena ◽  
Brenda V. Ortiz ◽  
Andres F. Jiménez-Lópe ◽  
Álvaro Sanz-Sáez ◽  
Susan A. O’Shaughnessy ◽  
...  

HighlightsCorn response to irrigation was influenced by the precipitation distribution in 2018 and 2019, and that impacted the response of CWSI as an irrigation scheduling signaling method.CWSI was sensitive to changes in soil water storage, increasing due to crop evapotranspiration and decreasing after a precipitation or irrigation event.In 2018, both seasonal CWSI and yield were not different among the irrigation treatments, while in 2019, seasonal CWSI and yield were all statistically different among the treatments evaluated.Post analysis of canopy and air temperature indicated that the temperature-time threshold (TTT) method might not appropriately signal crop water stress in a humid environment.Abstract. Irrigation scheduling based on the crop water stress index (CWSI) and temperature-time threshold (TTT) methods is promising for semi-arid and arid climates. The objective of this study was to investigate if CWSI and TTT methods could be used as irrigation signaling tools for a humid environment in the southeastern U.S. Corn canopy temperature data were collected in Alabama in 2018 and 2019 using infrared leaf temperature sensors on a fully irrigated treatment and on two limited irrigation treatments. A set of three soil water sensors installed at 0.15, 0.3, and 0.6 m soil depth were used to prescribe irrigation time and amount. CWSI was sensitive to precipitation, irrigation, and plant water uptake. No statistical differences in CWSI or yield among the three irrigation levels were found in 2018 when precipitation was well distributed during the season. In contrast, during 2019 both CWSI and yield differed significantly among the three irrigation treatments. Precipitation events in 2019 were sparse compared to 2018; therefore, irrigation promoted greater differences in water availability between treatments. Inconsistencies observed in potential irrigation signaling using the TTT method with or without the inclusion of a limiting relative humidity algorithm indicate that the TTT method may not be a reliable irrigation signaling tool for humid environments. Keywords: Corn yield, Crop water stress index, Irrigation scheduling, Limiting relative humidity, Soil water depletion, Temperature-time threshold.


2020 ◽  
Vol 63 (5) ◽  
pp. 1579-1592
Author(s):  
Bradely A. King ◽  
Krista C. Shellie ◽  
David D. Tarkalson ◽  
Alexander D. Levin ◽  
Vivek Sharma ◽  
...  

HighlightsArtificial neural network modeling was used to predict crop water stress index lower reference canopy temperature.Root mean square error of predicted lower reference temperatures was <1.1°C for sugarbeet and Pinot noir wine grape.Energy balance model was used to dynamically predict crop water stress index upper reference canopy temperature.Crop water stress index for sugarbeet was well correlated with irrigation and soil water status.Crop water stress idex was well correlated with midday leaf water potential of wine grape.Abstract. Normalized crop canopy temperature, termed crop water stress index (CWSI), was proposed over 40 years ago as an irrigation management tool but has experienced limited adoption in production agriculture. Development of generalized crop-specific upper and lower reference temperatures is critical for implementation of CWSI-based irrigation scheduling. The objective of this study was to develop and evaluate data-driven models for predicting the reference canopy temperatures needed to compute CWSI for sugarbeet and wine grape. Reference canopy temperatures for sugarbeet and wine grape were predicted using machine learning and regression models developed from measured canopy temperatures of sugarbeet, grown in Idaho and Wyoming, and wine grape, grown in Idaho and Oregon, over five years under full and severe deficit irrigation. Lower reference temperatures (TLL) were estimated using neural network models with Nash-Sutcliffe model efficiencies exceeding 0.88 and root mean square error less than 1.1°C. The relationship between TLL minus ambient air temperature and vapor pressure deficit was represented with a linear model that maximized the regression coefficient rather than minimized the sum of squared error. The linear models were used to estimate upper reference temperatures that were nearly double the values reported in previous studies. A daily CWSI, calculated as the average of 15 min CWSI values between 13:00 and 16:00 MDT for sugarbeet and between 13:00 and 15:00 local time for wine grape, were well correlated with irrigation events and amounts. There was a significant (p < 0.001) linear relationship between the daily CWSI and midday leaf water potential of Malbec and Syrah wine grapes, with an R2 of 0.53. The data-driven models developed in this study to estimate reference temperatures enable automated calculation of the CWSI for effective assessment of crop water stress. However, measurements taken under conditions of wet canopy or low solar radiation should be disregarded as they can result in irrational values of the CWSI. Keywords: Canopy temperature, Crop water stress index, Irrigation scheduling, Leaf water potential, Sugarbeet, Wine grape.


1997 ◽  
Vol 7 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Thomas R. Clarke

Irrigation scheduling can be improved by directly monitoring plant water status rather than depending solely on soil water content measurements or modeled evapotranspiration estimates. Plants receiving sufficient water through their roots have cooler leaves than those that are water stressed, leading to the development of the crop water stress index, which uses hand-held infrared thermometers as tools for scheduling irrigations. However, substantial error can occur in partial canopies when a downward-pointing infrared thermometer measures leaf temperature and the temperature of exposed, hot soil. To overcome this weakness, red and near-infrared images were combined mathematically as a vegetation index, which was used to provide a crop-specific measure of vegetative cover. Coupling the vegetation index with the paired radiant surface temperature from a thermal image, a trapezoidal two-dimensional index was empirically derived capable of detecting water stress even with a low percentage of canopy cover. Images acquired with airborne sensors over subsurface drip-irrigated muskmelon (Cucumis melo L.) fields demonstrated the method's ability to detect areas with clogged emitters, insufficient irrigation rate, and system water leaks. Although the procedure needs to be automated for faster image processing, the approach is an advance in irrigation scheduling and water stress detection technology.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1298
Author(s):  
Saray Gutiérrez-Gordillo ◽  
Iván Francisco García-Tejero ◽  
Víctor Hugo Durán Zuazo ◽  
Amelia García Escalera ◽  
Fernando Ferrera Gil ◽  
...  

This work examines the use of thermal imaging to determine the crop water status in young almond trees under sustained deficit irrigation strategies (SDIs). The research was carried out during two seasons (2018–2019) in three cultivars (Prunus dulcis Mill., cvs. Guara, Lauranne, and Marta) subjected to three irrigation treatments: a full irrigation treatment (FI) at 100% of irrigation requirements (IR), and two SDIs that received 75% and 65% of the IR, respectively. Crop water monitoring was done by measurements of canopy temperature, leaf water potential (Ψleaf), and stomatal conductance. Thermal readings were used to define the non-water-stress baselines (NWSB) and water-stress baselines (WSB) for each treatment and cultivar. According to our findings, Ψleaf was the most responsive parameter to reflect differences in almond water status. In addition, NWSB and WSB allowed the determination of the crop water-stress index (CWSI) and the increment of canopy temperature (ITC) for each SDI treatment, obtaining threshold values of CWSI (0.12–0.15) and ITC (~1 °C) that would ensure maximum water savings by minimizing the effects on yield. The findings highlight the importance of determining the different NWSB and WSB for different almond cultivars and its potential use for proper irrigation scheduling.


HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 276-279 ◽  
Author(s):  
Maria Victoria Cremona ◽  
Hartmut Stützel ◽  
Henning Kage

Two-year field experiments were carried out to evaluate the suitability of crop water stress index (CWSI) as a basis for irrigation scheduling of kohlrabi (Brassica oleracea L. var. gongylodes) by comparison with irrigation scheduling based on total soil water content (SWC). In the first year, irrigation scheduling when CWSI exceeded 0.3 resulted in more frequent water applications, but the total amount of irrigation water given was lower compared to irrigation when SWC fell below 70%. Kohlrabi tuber fresh weight at harvest was similar in both scheduling treatments, leading to 25% higher irrigation water use efficiency in the CWSI-scheduled plots. In the second year, three threshold levels, i.e., 0.2 and 80%, 0.4 and 60%, and 0.6 and 40% of CWSI and SWC, respectively, were investigated. At the level of highest water supply (CWSI = 0.2 and SWC = 80%), the total amount of water supplied was less in the CWSI but the number of irrigations was higher than in the SWC plots. The CWSI-based approach may be a method for irrigation scheduling of vegetables under temperate conditions. The higher irrigation frequency required would make this method particularly suitable in combination with irrigation system that allow frequent applications, i.e., in drip irrigation. To improve the method, a coupling with a soil water balance model seems promising.


2020 ◽  
pp. 1-13
Author(s):  
Christos Vamvakoulas ◽  
Ioannis Argyrokastritis ◽  
Panayiota Papastylianou ◽  
Yolanda Papatheohari ◽  
Stavros Alexandris

A two-year field experiment was conducted to determine the effect of water stress, including Crop Water Stress Index (CWSI), on seed, protein and oil yields, for two hybrids of drip-irrigated soybean in Central Greece. The experiment was set up as a split plot design with four replicates, five main plots (irrigation treatments) and two sub-plots (soybean hybrids, ‘PR91M10’ and ‘PR92B63’). Irrigation was applied to provide 100, 75, 50 and 25% of the crop evapotranspiration needs and 0% non-irrigated. Biomass weight, seed yield, oil and protein concentration were measured after harvest. To compute CWSI, lower and upper baselines were developed based on the canopy temperature measurements of I100 and I0 treatments, respectively. Deficit irrigation had a significant effect on biomass, seed, protein and oil yields. Hybrid PR92B63 was more responsive to irrigation and showed higher biomass, seed protein and oil yields, while the more sensitive hybrid PR91M10 had the ability to maintain productivity with increasing degrees of water stress. The rain-fed treatments significantly reduced biomass production and seed yield compared with the fully-irrigated ones. The highest and the lowest protein and oil yields were obtained in the I100 and I0 treatments respectively in both years and cultivars. Statistically significant exponential relationships were determined between CWSI and biomass, seed, protein and oil yields. Generally, CWSI could be used to measure crop water status and to improve irrigation scheduling of the crop and 0.10 for PR92B63 and 0.19 for PR91M10 could be offered as threshold values under the climatic conditions of the region.


2014 ◽  
Vol 15 (3) ◽  
pp. 273-289 ◽  
Author(s):  
Ronit Rud ◽  
Y. Cohen ◽  
V. Alchanatis ◽  
A. Levi ◽  
R. Brikman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document