The impact of Arctic sea ice cover on seasonal modulation of the M2 tide

Author(s):  
Inger Bij de Vaate ◽  
Amey Vasulkar ◽  
Cornelis Slobbe ◽  
Martin Verlaan

<p>The impact of Arctic sea ice decline on future global tidal and storm surge extreme water levels is unknown. Regional studies show that the impact can be substantial; causing increased erosion and posing higher risks to fragile Arctic ecosystems in low-lying areas. Since Arctic tides and surges influence global water levels, consequences of Arctic sea ice decline will be noticed across the globe. In the ongoing FAST4Nl project, an Arctic Total Water Level model will be used to quantify this impact. The model will be developed as an extension of the operational Global Tide and Surge Model (GTSM) and includes the effect of sea ice on tides.</p><p>Here we present the results of a study on the seasonal variability of the M<sub>2</sub> tide with respect to differences in sea ice cover. The effect of sea ice on the M<sub>2</sub> amplitude was modelled for minimal and maximal sea ice configurations. In addition, tidal harmonic analysis was performed on a global tide gauge data set, supplemented by SAR altimeter derived water levels from the Arctic region. The high along-track resolution of SAR altimeters (300 m) enables to derive water levels from leads in the sea ice. Here, the retrieved sea surface heights within a given region were stacked, in order to obtain a sufficiently large data set for analysis of the predominantly ice-covered areas. This allowed to gain insight in the seasonal modulation of both local and global tides and directly relate these processes to variations in sea ice.</p>

2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2020 ◽  
Author(s):  
David Lipson ◽  
Kim Reasor ◽  
Kååre Sikuaq Erickson

<p>The predominantly Inupiat people of Utqiaġvik, Alaska are among those who will be most impacted by<br>climate change and the loss of Arctic sea ice in the near future. Subsistence hunting of marine mammals<br>associated with sea ice is central to the Inupiat way of life. Furthermore, their coastal homes and<br>infrastructure are increasingly subject to damage from increased wave action on ice-free Beaufort and<br>Chukchi Seas. While the people of this region are among the most directly vulnerable to climate change,<br>the subject is not often discussed in the elementary school curriculum. Meanwhile, in many other parts<br>of the world, the impacts of climate change are viewed as abstract and remote. We worked with fifth<br>grade children in Utqiaġvik both to educate them, but also to engage them in helping us communicate<br>to rest of the world, in an emotionally resonant way, the direct impacts of climate change on families in<br>this Arctic region.<br>The team consisted of a scientist (Lipson), an artist (Reasor) and an outreach specialist (Erickson) of<br>Inupiat heritage from a village in Alaska. We worked with four 5th grade classes of about 25 students<br>each at Fred Ipalook Elementary in Utqiaġvik, AK. The scientist gave a short lecture about sea ice and<br>climate change in the Arctic, with emphasis on local impacts to hunting and infrastructure (with<br>interjections from the local outreach specialist). We then showed the students a large poster of<br>historical and projected sea ice decline, and asked the students to help us fill in the white space beneath<br>the lines. The artist led the children in making small art pieces that represent things that are important<br>to their lives in Utqiaġvik (they were encouraged to paint animals, but they were free to do whatever<br>they wanted). We returned to the class later that week and had each student briefly introduce<br>themselves and their painting, and place it to the large graph of sea ice decline, which included the dire<br>predictions of the RCP8.5 scenario. At the end we added the more hopeful RCP2.6 scenario to end on a<br>positive note. The artist then painted in the more hopeful green line by hand.<br>The result was a poster showing historical and projected Arctic sea ice cover, with 100 beautiful<br>paintings by children of things that are dear to them about their home being squeezed into a smaller<br>region as the sea ice cover diminishes. We scanned all the artwork to make a digital version of the<br>poster, and left the original with the school. These materials are being converted into an interactive<br>webpage where viewers can click on the individual painting for detail, and get selected recordings of the<br>children’s statements about their artwork. This project can serve as a nucleus for communicating to<br>other classes and adults about the real impacts of climate change in people’s lives.</p>


2021 ◽  
Author(s):  
Amey Vasulkar ◽  
Martin Verlaan ◽  
Cornelis Slobbe

<p>To study the effect of changing climate and declining sea ice on tides it is pertinent to include the effects of sea ice in a tidal model. Most of the hydrodynamic global tidal models either ignore the effect of sea ice on tides or approximately model it as an addition to the existing bottom frictional stress. Our focus is to extend an existing global tidal model (Global tide and storm surge model(GTSM), Verlaan et. al 2015) to include the effects of the Arctic sea ice on tides without coupling it to a sea ice model.</p><p>We propose to divide the sea ice cover into different regimes: landfast ice, free drift sea ice, and ice drifting under strong internal stresses, and treat each regime based on the physics between the respective regime and the tides.</p><p>It is seen that the free drift sea ice (almost) exactly follows the tides and has little to no effect on the tidal amplitudes and phases. In the case of landfast ice, we use the differences in landfast ice cover between the winter (maximum) and summer (zero) to check for the resulting differences in water levels and thus, comment on the performance of the model. Finally, the physics between the sea ice drifting under strong internal stresses and water is studied to model the effect of such ice on tides.</p>


Author(s):  
O Y Krasulina ◽  
V V Rossokhin ◽  
L K Bobodzhanova ◽  
A S Safonova

2012 ◽  
Vol 12 (5) ◽  
pp. 12423-12451
Author(s):  
D. Cai ◽  
M. Dameris ◽  
H. Garny ◽  
T. Runde

Abstract. In this study the impact of a substantially reduced Arctic sea-ice cover on the lower and middle stratosphere is investigated. For this purpose two simulations with fixed boundary conditions (the so-called time-slice mode) were performed with a Chemistry-Climate Model. A reference time-slice with boundary conditions representing the year 2000 is compared to a second sensitivity simulation in which the boundary conditions are identical apart from the polar sea-ice cover, which is set to represent the years 2089–2099. Three features of Arctic air temperature response have been identified which are worth to be discussed in detail. Firstly, tropospheric mean polar temperatures increase up to 7 K during winter. This warming is primarily driven by changes in outgoing long-wave radiation. Secondly, temperatures decrease significantly in the summer stratosphere caused by a decline in outgoing short-wave radiation, accompanied by a characteristic increase of ozone mixing ratios. Thirdly, there are short periods of statistical significant temperature anomalies in the winter stratosphere probably driven by modified planetary wave activity. Both the internal as well as the inter-annual variability of Arctic sea-ice content is related to Arctic climatic fields like surface air temperature, sea level pressure or precipitation, which are analogue with the variability of the Arctic Oscillation (AO)-index. In this study significant changes in the AO-index are detected in the course of winter. Neutral phases of AO appear more often. As expected, the dominating dynamical response of the stratosphere during winter turned out to be consistent to alterations in the tropospheric AO, although it is not statistically significant most of the time.


2011 ◽  
Vol 52 (57) ◽  
pp. 192-196 ◽  
Author(s):  
D.K. Perovich ◽  
K.F. Jones ◽  
B. Light ◽  
H. Eicken ◽  
T. Markus ◽  
...  

AbstractThe summer extent of the Arctic sea-ice cover has decreased in recent decades and there have been alterations in the timing and duration of the summer melt season. These changes in ice conditions have affected the partitioning of solar radiation in the Arctic atmosphere–ice–ocean system. the impact of sea-ice changes on solar partitioning is examined on a pan-Arctic scale using a 25 km × 25 km Equal-Area Scalable Earth Grid for the years 1979–2007. Daily values of incident solar irradiance are obtained from NCEP reanalysis products adjusted by ERA-40, and ice concentrations are determined from passive microwave satellite data. the albedo of the ice is parameterized by a five-stage process that includes dry snow, melting snow, melt pond formation, melt pond evolution, and freeze-up. the timing of these stages is governed by the onset dates of summer melt and fall freeze-up, which are determined from satellite observations. Trends of solar heat input to the ice were mixed, with increases due to longer melt seasons and decreases due to reduced ice concentration. Results indicate a general trend of increasing solar heat input to the Arctic ice–ocean system due to declines in albedo induced by decreases in ice concentration and longer melt seasons. the evolution of sea-ice albedo, and hence the total solar heating of the ice–ocean system, is more sensitive to the date of melt onset than the date of fall freeze-up. the largest increases in total annual solar heat input from 1979 to 2007, averaging as much as 4%a–1, occurred in the Chukchi Sea region. the contribution of solar heat to the ocean is increasing faster than the contribution to the ice due to the loss of sea ice.


2018 ◽  
Vol 12 (9) ◽  
pp. 2855-2868 ◽  
Author(s):  
Ann Keen ◽  
Ed Blockley

Abstract. We present a method for analysing changes in the modelled volume budget of the Arctic sea ice as the ice declines during the 21st century. We apply the method to the CMIP5 global coupled model HadGEM2-ES to evaluate how the budget components evolve under a range of different forcing scenarios. As the climate warms and the ice cover declines, the sea ice processes that change the most in HadGEM2-ES are summer melting at the top surface of the ice due to increased net downward radiation and basal melting due to extra heat from the warming ocean. There is also extra basal ice formation due to the thinning ice. However, the impact of these changes on the volume budget is affected by the declining ice cover. For example, as the autumn ice cover declines the volume of ice formed by basal growth declines as there is a reduced area over which this ice growth can occur. As a result, the biggest contribution to Arctic ice decline in HadGEM2-ES is the reduction in the total amount of basal ice growth during the autumn and early winter. Changes in the volume budget during the 21st century have a distinctive seasonal cycle, with processes contributing to ice decline occurring in May–June and September to November. During July and August the total amount of sea ice melt decreases, again due to the reducing ice cover. The choice of forcing scenario affects the rate of ice decline and the timing and magnitude of changes in the volume budget components. For the HadGEM2-ES model and for the range of scenarios considered for CMIP5, the mean changes in the volume budget depend strongly on the evolving ice area and are independent of the speed at which the ice cover declines.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


2011 ◽  
Vol 57 (202) ◽  
pp. 231-237 ◽  
Author(s):  
David Marsan ◽  
Jérôme Weiss ◽  
Jean-Philippe Métaxian ◽  
Jacques Grangeon ◽  
Pierre-François Roux ◽  
...  

AbstractWe report the detection of bursts of low-frequency waves, typically f = 0.025 Hz, on horizontal channels of broadband seismometers deployed on the Arctic sea-ice cover during the DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies) experiment in spring 2007. These bursts have amplitudes well above the ambient ice swell and a lower frequency content. Their typical duration is of the order of minutes. They occur at irregular times, with periods of relative quietness alternating with periods of strong activity. A significant correlation between the rate of burst occurrences and the ice-cover deformation at the ∼400 km scale centered on the seismic network suggests that these bursts are caused by remote, episodic deformation involving shearing across regional-scale leads. This observation opens the possibility of complementing satellite measurements of ice-cover deformation, by providing a much more precise temporal sampling, hence a better characterization of the processes involved during these deformation events.


Sign in / Sign up

Export Citation Format

Share Document