Chemical Geodynamics of Asthenospheric Outflow in the western Pacific: Philippine Sea Back-arc Basin Mantle Source of the Yap Trench Forearc Lavas

Author(s):  
Limei Tang ◽  
Ling Chen

<p>We present new major and trace element chemistry and Sr, Nd, and Pb isotope data from basalts, recovered from the forearc setting of the Yap Trench in the western Pacific, and discuss their melt evolution and petrogenesis within the framework of the geodynamic interactions among the Caroline Plate, the Caroline ridge, and the Philippine Sea plate. These rocks have mid-ocean ridge basalt (MORB)-like geochemical features, including medium Fe contents, tholeiitic affinity, high TiO<sub>2</sub> values at a given Fe<sub>2</sub>O<sub>3</sub>/MgO ratio, Ti/V, Nb/Y, Ba/Yb, and Ba/Th ratios similar to those of back-arc basin basalts (BABB), and trace element patterns commonly displayed by MORB and BABB lavas. However, these basalts are characterized by highly radiogenic Sr and Pb contents, reminiscent of western Pacific sediments. We suggest that forearc magmatism was responsible for the origin and petrogenesis of these rocks. Forearc magmatism was induced by the shrinking of the Philippine Sea plate, which squeezed out the underlying back-arc basin asthenosphere with Indian–type ambient mantle characteristics to invade the forearc mantle of the Yap Trench and causes lithospheric extension. Upwelling and decompression melting of this mantle produced MORB-like lavas in the narrow forearc setting. An apparent slab tear or gap in the subducting plate facilitate the penetration of the mantle outflow. The collision of the Caroline Ridge subducted more sediments into the mantle wedge. Melting of the subducted sediments and the invasion of the Indian-type asthenosphere into the forearc account for the highly radioactive Sr and Pb isotopes of the MORB-like lavas.</p>

2021 ◽  
Author(s):  
Fernanda Torres Garcia ◽  
Mauricio Calderón ◽  
Leonardo Fadel Cury ◽  
Thomas Theye ◽  
Joachim Opitz ◽  
...  

<p>During the Upper Jurassic-Lower Cretaceous times the western margin of Gondwana in southern Patagonia experienced extreme lithospheric extension and generation of rift and marginal back-arc basins. The ophiolitic complexes of the Rocas Verdes basin comprises incomplete ophiolite pseudostratigraphy lacking ultramafic rocks. The Tortuga Ophiolitic Complex, the southernmost seafloor remnant of the Rocas Verdes basin, record the most advanced evolutionary stage of the back-arc basin evolution in a mid-ocean ridge-type setting. The base of the Tortuga Complex consists of massive and layered gabbros, most of which are two pyroxene and olivine gabbros, leucogabbros, and clinopyroxene troctolites intruded by dikes of basalt and diabase with chilled margins. We present new major and trace element composition of clinopyroxene from the gabbros and sheeted dikes complexes to assess the geochemical affinity of parental basaltic magmas. Clinopyroxene in gabbros is mostly augite and have Al contents of 0.06-0.14 a.p.f.u. and Mg# of 80-92. Clinopyroxene in dolerites in the sheeted dike unit (augite and diopside) have Al content of 0.11-0.12 a.p.f.u. and Mg# of 85-92. Some immobile trace elements (e.g. Zr, Ti, Y) are sensitive to the degree of partial melting and mantle source composition, and can be used as a proxy for distinguishing tectonic environments. The Ti+Cr vs. Ca diagram, coupled with moderate-high TiO<sub>2</sub> content of clinopyroxene (0.4-1.4 wt.%) suggests their generation in mid-oceanic ridge-type environment (cf. Beccaluva et al., 1989).  The high Ti/Zr ratios (of ~4-11) coupled with low Zr contents (~0.2-1.1) are expected for higher degrees of partial melting or for melting of more depleted mantle sources. Conversely, low Zr/Y ratios (0.05-0.13) plot between the range of arc basalts. Chondrite-normalized REE patterns in clinopyroxene display a strong depletion of LREE compared to HREE and have an almost flat pattern in the MREE to HREE with a positive Eu (Eu*= 0.9-1.1) anomaly, indicating that clinopyroxene crystallized from a strongly depleted mid-ocean-ridge-type basalt, formed by extensive fractional melting of the mantle source and/or fractional crystallization and accumulation of anhydrous phases. The general trend of the incompatible trace elements patterns exhibit depletion in LILEs, minor HFSEs depletion, positive anomaly of Rb and negative anomalies in Ba, Zr, Ti and Nb, consistent with their generation from a refractory mantle source barely influenced by subduction components derived from the oceanic slab. This agrees with basalt generation in a back-arc basin located far away from the convergent margin. This study was supported by the Fondecyt grant 1161818 and the Anillo Project ACT-105.</p>


Available data enable the recognition of three periods of back-arc crustal generation and three pulses of volcanic activity along the associated island arcs of the Philippine Sea. The geochemistry of the basalts from the back-arc basins of different ages indicates that in most cases they are identical to mid-ocean ridge basalts, and therefore should have similar sources and origins. In contrast, the island arc rock composition is variable in space and time, reflecting the different source and more complex nature of corresponding magmatism. Geomagnetic studies and recent Deep Sea Drilling Project results suggest an alternate sequence of back-arc and arc magmatic cycles. Both geochemical and geological observations provide important constraints on models of magmatism and extensions tectonics at convergent plate boundaries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


1992 ◽  
Vol 29 (7) ◽  
pp. 1448-1458 ◽  
Author(s):  
M. R. Laflèche ◽  
C. Dupuy ◽  
J. Dostal

The late Archean Blake River Group volcanic sequence forms the uppermost part of the southern Abitibi greenstone belt in Quebec. The group is mainly composed of mid-ocean-ridge basalt (MORB)-like tholeiites that show a progressive change of several incompatible trace element ratios (e.g., Nb/Th, Nb/Ta, La/Yb, and Zr/Y) during differentiation. The compositional variations are inferred to be the result of fractional crystallization coupled with mixing–contamination of tholeiites by calc-alkaline magma which produced the mafic–intermediate lavas intercalated with the tholeiites in the uppermost part of the sequence. The MORB-like tholeiites were probably emplaced in a back-arc setting.


1993 ◽  
Vol 30 (6) ◽  
pp. 1123-1140 ◽  
Author(s):  
P. C. Lightfoot ◽  
H. de Souza ◽  
W. Doherty

Major and trace element data are presented for 2.2 Ga Proterozoic diabase sills from across the Nipissing magmatic province of Ontario. In situ differentiation of the magma coupled with assimilation of Huronian Supergroup roof sediments is responsible for the variation in composition between quartz diabase and granophyric diabase seen within many of the differentiated intrusions. Uniform trace element and isotope ratio signatures, such as La/Sm (2.8 – 3.7) and εNdCHUR (−2.7 to −5.9) characterize chilled margins and undifferentiated quartz diabases. These chemical signatures suggest the existence of a single magma source that was parental to intrusions throughout the magmatic province; this magma has higher La/Sm and lower Ti/Y than primitive mantle and is displaced towards the composition of shales. Most chilled diabases and quartz diabases have a similar Mg# (0.64 and 0.60) and Ni content (98 and 127 ppm), and it is argued that the magma differentiated at depth and was emplaced as a uniform low-Mg magma. The Wanapitei intrusion and Kukagami Lake sill are an exception in that although the quartz diabase has La/Sm similar to the Nipissing magma type, which suggests that they came from the same source, the Mg# (0.68–0.71) and Ni content (130–141 ppm) are higher, which may suggest that they are either slightly more primitive examples of the normal Nipissing magma or that cumulus hypersthene has been resorbed. The light rare earth element enriched signature of the Nipissing magmas was perhaps introduced from the continental crust as the magma migrated from the mantle to the surface, but a remarkably constant and large amount (>20%) of crustal contamination would be required. An addition of 1 –3% shale to the source of a transitional mid-ocean ridge basalt type magma can broadly reproduce the compositional features of the Nipissing magma type. The source characteristics were perhaps imparted during subduction accompanying the terminal Kenoran orogeny.


2011 ◽  
Vol 48 (2) ◽  
pp. 161-185 ◽  
Author(s):  
Thomas E. Krogh ◽  
Sandra L. Kamo ◽  
Thomas B. Hanley ◽  
David F. Hess ◽  
Peter S. Dahl ◽  
...  

The Middle Mountain Metamorphic Domain of the Montana Metasedimentary Terrane, northwestern Wyoming Craton, within the northwestern Tobacco Root Mountains, mainly comprises migmatized tonalitic gneiss interlayered with amphibolitic (hornblende) gneiss, both of which are cut by metamorphosed mafic rocks. Together, these gneisses are defined as Middle Mountain Gneiss. Archean tonalitic gneiss from west of, and amphibolitic gneiss from east of, the Bismark Fault give, from chemically and air-abraded zircon grains, U–Pb ID–TIMS ages of 3325.5 ± 1.7 and 3340 Ma, respectively. These results reflect primary magmatic ages and show that the Middle Mountain Gneiss extends into the northern area of the Central Fault Block, between the Bismark and Mammoth faults. Older crustal processes in the tonalitic gneiss are evidenced by inherited grains, the oldest of which is >3460 Ma. A metabasite hosted in tonalitic gneiss in the Bismark Fault selvage zone yields a zircon age of 2468 Ma, which is interpreted as the time of metamorphism. This date and other ca. 2470 Ma dates known in the region reflect a series of thermotectonic events designated here as the Beaverhead – Tobacco Root Orogeny. Geochemical evidence in the Central Fault Block metabasites suggests that their >2470 Ma precursors evolved in a back-arc – arc-rift setting, whereas their equivalents west of the Bismark Fault were largely mid-ocean ridge basalt-related tholeiites and east of the Central Fault Block were back-arc tholeiites showing some continental affinity. The metabasite was metamorphosed, deformed, and intruded by pegmatite at 1756 Ma during the Big Sky Orogeny. This orogenic event also produced new zircon growth in Archean tonalitic gneiss. Monazite with an age of 75 Ma, found at one location, reflects nearby intrusion of the Cretaceous Tobacco Root Batholith.


Destructive plate margin magmas may be subdivided into two groups on the basis of their rare earth element (REE) ratios. Most island arc suites have low Ce/Yb, and remarkably restricted isotope ratios of 87 Sr/ 86 Sr = 0.7033, 143 Nd/ 144 Nd = 0.51302, 206 Pb/ 204 Pb = 18.76 , 207 Pb/ 204 Pb = 15.57, and 208 Pb/ 204 Pb = 38.4. However, they also have Rb/Sr (0.03), Th/U (2.2) and Ce/Yb (8.5) ratios which are significantly less than accepted estimates for the bulk continental crust. The high Ce/Yb suites have higher incompatible element contents, more restricted heavy REE, and much more variable isotope ratios. Such rocks are found in the Aeolian Islands, Grenada, Indonesia and Philippines, and their isotope and trace element features have been attributed both to contributions from subducted sediment, and/or old trace element enriched material in the mantle wedge. It is argued that for isotope and trace element models the slab component can usefully be taken to consist of subducted sediment and altered mid-ocean ridge basalts, since these may contain ca. 80% of the water in the subducted slab, and the distinctive trace element features of arc magmas are generally attributed to the movement of material in hydrous fluids. The isotope data indicate that not more than 15% of the Sr and Th in an average arc magma were derived from subducted material, and that the rest were derived from the mantle wedge. The fluxes of elements which cannot be characterized isotopically are more difficult to constrain, but for most minor and trace elements the slab derived contribution in arc magmas is too small to have a noticeable effect on the residual slab.


Sign in / Sign up

Export Citation Format

Share Document