The observed impact of aerosols on cloud droplet formation during the RACLETS campaign

Author(s):  
Paraskevi Georgakaki ◽  
Aikaterini Bougiatioti ◽  
Athanasios Nenes

<p>The influence of aerosols serving as cloud condensation nuclei (CCN) on the production of droplets in mixed-phase cloud systems is an ongoing research problem that influences their optical and microphysical properties. During February and March 2019, the Role of Aerosols and CLouds Enhanced by Topography on Snow (RACLETS) field campaign collected unique and detailed airborne and ground-based in-situ measurements of cloud and aerosol properties over the Swiss Alps. This study presents analysis of the observed CCN activity of the aerosol, which combined with observed aerosol size distributions, can be introduced into a cloud droplet activation parameterization to investigate the drivers of droplet variability in these clouds. The implications for secondary ice production are then discussed.</p>

2019 ◽  
Author(s):  
Pascal Polonik ◽  
Christoph Knote ◽  
Tobias Zinner ◽  
Florian Ewald ◽  
Tobias Kölling ◽  
...  

Abstract. The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ and remotely sensed aerosol, cloud, and atmospheric radiation data collected during ACRIDICON-CHUVA with regional, online-coupled chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysical properties (droplet number concentration and effective radius). We found agreement between modeled and observed median cloud droplet number concentrations (CDNC) for low values of CDNC, i.e., low levels of pollution. In general, a linear relationship between modeled and observed CDNC with a slope of two was found, which means a systematic underestimation of modeled CDNC as compared to measurements. Variability in cloud condensation nuclei (CCN) number concentrations and cloud droplet effective radii (reff) was also underestimated by the model. Modeled effective radius profiles began to saturate around 500 CCN per cm3 at cloud base, indicating an upper limit for the model sensitivity well below CCN concentrations reached during the burning season in the Amazon Basin. Regional background aerosol concentrations were sufficiently high such that the additional CCN emitted from local fires did not cause a notable change in modelled cloud microphysical properties. In addition, we evaluate a parameterization of CDNC at cloud base using more readily available cloud microphysical properties, aimed at in situ observations and satellite retrievals. Our study casts doubt on the validity of regional scale modeling studies of the cloud albedo effect in convective situations for polluted situations where the number concentration of CCN is greater than 500 cm−3.


2021 ◽  
Vol 21 (9) ◽  
pp. 6681-6706
Author(s):  
Fabiola Ramelli ◽  
Jan Henneberger ◽  
Robert O. David ◽  
Johannes Bühl ◽  
Martin Radenz ◽  
...  

Abstract. The seeder–feeder mechanism has been observed to enhance orographic precipitation in previous studies. However, the microphysical processes active in the seeder and feeder region are still being understood. In this paper, we investigate the seeder and feeder region of a mixed-phase cloud passing over the Swiss Alps, focusing on (1) fallstreaks of enhanced radar reflectivity originating from cloud top generating cells (seeder region) and (2) a persistent low-level feeder cloud produced by the boundary layer circulation (feeder region). Observations were obtained from a multi-dimensional set of instruments including ground-based remote sensing instrumentation (Ka-band polarimetric cloud radar, microwave radiometer, wind profiler), in situ instrumentation on a tethered balloon system, and ground-based aerosol and precipitation measurements. The cloud radar observations suggest that ice formation and growth were enhanced within cloud top generating cells, which is consistent with previous observational studies. However, uncertainties exist regarding the dominant ice formation mechanism within these cells. Here we propose different mechanisms that potentially enhance ice nucleation and growth in cloud top generating cells (convective overshooting, radiative cooling, droplet shattering) and attempt to estimate their potential contribution from an ice nucleating particle perspective. Once ice formation and growth within the seeder region exceeded a threshold value, the mixed-phase cloud became fully glaciated. Local flow effects on the lee side of the mountain barrier induced the formation of a persistent low-level feeder cloud over a small-scale topographic feature in the inner-Alpine valley. In situ measurements within the low-level feeder cloud observed the production of secondary ice particles likely due to the Hallett–Mossop process and ice particle fragmentation upon ice–ice collisions. Therefore, secondary ice production may have been partly responsible for the elevated ice crystal number concentrations that have been previously observed in feeder clouds at mountaintop observatories. Secondary ice production in feeder clouds can potentially enhance orographic precipitation.


2012 ◽  
Vol 29 (10) ◽  
pp. 1532-1541 ◽  
Author(s):  
Sara Lance

Abstract Central to the aerosol indirect effect on climate is the relationship between cloud droplet concentrations Nd and cloud condensation nuclei (CCN) concentrations. There are valid reasons to expect a sublinear relationship between measured Nd and CCN, and such relationships have been observed for clouds in a variety of locations. However, a measurement artifact known as “coincidence” can also produce a sublinear trend. The current paper shows that two commonly used instruments, the cloud droplet probe (CDP) and the cloud and aerosol spectrometer (CAS), can be subject to significantly greater coincidence errors than are typically recognized, with an undercounting bias of at least 27% and an oversizing bias of 20%–30% on average at Nd = 500 cm−3, and with an undercounting bias of as much as 44% at Nd = 1000 cm−3. This type of systematic error may have serious implications for interpretation of in situ cloud observations. It is shown that a simple optical modification of the CDP dramatically reduces oversizing and undercounting biases due to coincidence. Guidance is provided for diagnosing coincidence errors in CAS and CDP instruments.


2021 ◽  
Vol 21 (19) ◽  
pp. 15259-15282
Author(s):  
Christoph Mahnke ◽  
Ralf Weigel ◽  
Francesco Cairo ◽  
Jean-Paul Vernier ◽  
Armin Afchine ◽  
...  

Abstract. The Asian summer monsoon is an effective pathway for aerosol particles and precursors from the planetary boundary layer over Central, South, and East Asia into the upper troposphere and lower stratosphere. An enhancement of aerosol particles within the Asian monsoon anticyclone (AMA), called the Asian tropopause aerosol layer (ATAL), has been observed by satellites. We discuss airborne in situ and remote sensing observations of aerosol microphysical properties conducted during the 2017 StratoClim field campaign within the AMA region. The aerosol particle measurements aboard the high-altitude research aircraft M55 Geophysica (maximum altitude reached of ∼20.5 km) were conducted with a modified ultra-high-sensitivity aerosol spectrometer – airborne (UHSAS-A; particle diameter detection range of 65 nm to 1 µm), the COndensation PArticle counting System (COPAS, detecting total concentrations of submicrometer-sized particles), and the New Ice eXpEriment – Cloud and Aerosol Spectrometer with Detection of POLarization (NIXE-CAS-DPOL). In the COPAS and UHSAS-A vertical particle mixing ratio (PMR) profiles and the size distribution profiles (for number, surface area, and volume concentration), the ATAL is evident as a distinct layer between ∼370 and 420 K potential temperature (Θ). Within the ATAL, the maximum detected PMRs (from the median profiles) were ∼700 mg−1 for particle diameters between 65 nm and 1 µm (UHSAS-A) and higher than 2500 mg−1 for diameters larger than 10 nm (COPAS). These values are up to 2 times higher than those previously found at similar altitudes in other tropical locations. The difference between the PMR profiles measured by the UHSAS-A and the COPAS indicate that the region below the ATAL at Θ levels from 350 to 370 K is influenced by the nucleation of aerosol particles (diameter <65 nm). We provide detailed analyses of the vertical distribution of the aerosol particle size distributions and the PMR and compare these with previous tropical and extratropical measurements. The backscatter ratio (BR) was calculated based on the aerosol particle size distributions measured in situ. The resulting data set was compared with the vertical profiles of the BR detected by the multiwavelength aerosol scatterometer (MAS) and an airborne miniature aerosol lidar (MAL) aboard the M55 Geophysica and by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The data of all four methods largely agree with one another, showing enhanced BR values in the altitude range of the ATAL (between ∼15 and 18.5 km) with a maximum at 17.5 km altitude. By means of the AMA-centered equivalent latitude calculated from meteorological reanalysis data, it is shown that such enhanced values of the BR larger than 1.1 could only be observed within the confinement of the AMA.


2014 ◽  
Vol 14 (8) ◽  
pp. 12071-12120 ◽  
Author(s):  
S. Molleker ◽  
S. Borrmann ◽  
H. Schlager ◽  
B. Luo ◽  
W. Frey ◽  
...  

Abstract. In January 2010 and December 2011 synoptic scale PSC fields were probed during seven flights of the high altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction.) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 μm and 40 μm were recorded simultaneously by up to four different optical in situ instruments. Three of these particle instruments are based on the detection of forward scattered light by single particles. The fourth instrument is a grey scale optical array imaging probe. Optical particle diameters of up to 35 μm were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas phase and particle bound NOy were measured, as well as water vapor concentrations, and other variables. Two remote sensing particle instruments, the Miniature Aerosol Lidar (MAL) and the backscatter sonde (MAS, Multiwavelenght Aerosol Scatterometer) showed the synoptic scale of the encountered PSCs. The particle mode below 2 μm in size diameter has been identified as supercooled ternary solution droplets (STS). The PSC particles in the size range above 2 μm in diameter are considered to consist of nitric acid hydrates or ice, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. In particular, with respect to the denitrification by sedimentation of large HNO3-contaning particles, generally considered as NAT, our new measurements raise questions concerning composition, shape and nucleation pathways. Measurement uncertainties are discussed concerning probable overestimations of measured particle sizes and volumes. We hypothesize that either a strong asphericity or the particle composition (e.g. water-ice coated with NAT) could explain our observations.


2020 ◽  
Author(s):  
Hailing Jia ◽  
Xiaoyan Ma ◽  
Fangqun Yu ◽  
Yangang Liu ◽  
Yan Yin

&lt;p&gt;In situ aircraft measurements obtained during the RACORO field campaign are analyzed to study the aerosol effects on different cloud regimes. The results show that with increasing cloud condensation nuclei (CCN), cloud droplet number concentration (N&lt;sub&gt;d&lt;/sub&gt;) significantly increases in stratocumulus (Sc) while remains almost unchanged in cumulus (Cu). By using a new approach to strictly constrain the dynamics in Cu, we found that neither simultaneously changing cloud dynamics nor dilution of cloud water induced by entrainment-mixing can explain the observed insensitivity of N&lt;sub&gt;d&lt;/sub&gt;. The different degree of reduction in cloud supersaturation caused by increasing aerosols might be responsible for the observed different aerosol indirect effect between Sc and Cu.&lt;/p&gt;


2020 ◽  
Author(s):  
Denisa Elena Moacă ◽  
Sorin Nicolae Vâjâiac ◽  
Andreea Calcan ◽  
Valeriu Filip

&lt;p&gt;The influence of aerosol on the various aspects of the atmospheric properties as well as on the energetic balance is widely recognised in the scientific community and this issue is currently subject to worldwide intense investigations. Among the multiple ways aerosol particles are impacting the atmospheric environment, their interference with the phase transformations of the atmospheric water is of particular importance. Cloud microphysics, on the other hand, is one of the key components in weather forecast and, therefore, in pursuing daily domestic activities ranging from agriculture to energy harvesting and aviation. The micro-physical processes taking place in clouds are strongly influenced by the spatiotemporal variation of the size distribution of the cloud droplets. In this context, as in situ investigations of clouds seem appropriate, one of the most useful types of instruments is casted into the generic name of Cloud and Aerosol Spectrometer (CAS) that can be mounted on specialized research aircraft. The CAS working principle relies basically on measuring the forward scattering cross section (FWSCS) of light with a certain wavelength on a cloud particle and comparing it to the FWSCS computed for pure water spheres. The eventual matching of these values leads to assigning a certain value for the measured particle&amp;#8217;s diameter. The light wavelength is usually chosen in a range where pure water has virtually no absorption. However, atmospheric aerosol frequently mixes up with cloud droplets (starting even from the nucleation processes) and alters their optical properties. By increasing absorption and/or refractivity with respect to those of pure water, one can easily show that the FWSCS-diameter diagram changes drastically by becoming smoother and with an overall significant decrease in absolute values. This means that a CAS will systematically count &amp;#8220;contaminated&amp;#8221; cloud droplets in a lower range of diameters, thus distorting their real size distribution. This effect is inherently degrading the objectivity of CAS measurements and should be more pronounced when levels of sub-micrometer sized aerosol increase at the cloud altitude. The present study aims at pointing out such correlation in order to estimate the reliability of size distributions (and of the ensuing cloud microphysical properties) obtained by CAS.&lt;/p&gt;


2005 ◽  
Vol 22 (10) ◽  
pp. 1494-1506 ◽  
Author(s):  
Liang Liao ◽  
Robert Meneghini ◽  
Toshio Iguchi ◽  
Andrew Detwiler

Abstract Use of dual-wavelength radar, with properly chosen wavelengths, will significantly lessen the ambiguities in the retrieval of microphysical properties of hydrometeors. In this paper, a dual-wavelength algorithm is described to estimate the characteristic parameters of the snow size distributions. An analysis of the computational results, made at X and Ka bands (T-39 airborne radar) and at S and X bands (CP-2 ground-based radar), indicates that valid estimates of the median volume diameter of snow particles, D0, should be possible if one of the two wavelengths of the radar operates in the non-Rayleigh scattering region. However, the accuracy may be affected to some extent if the shape factors of the gamma distribution used for describing the particle distribution are chosen far from the true values or if cloud water attenuation is significant. To examine the validity and accuracy of the dual-wavelength radar algorithms, the algorithms are applied to the data taken from the Convective and Precipitation-Electrification Experiment (CaPE) in 1991, in which the dual-wavelength airborne radar was coordinated with in situ aircraft particle observations and ground-based radar measurements. Having carefully coregistered the data obtained from the different platforms, the airborne radar-derived size distributions are then compared with the in situ measurements and ground-based radar. Good agreement is found for these comparisons despite the uncertainties resulting from mismatches of the sample volumes among the different sensors as well as spatial and temporal offsets.


2013 ◽  
Vol 13 (13) ◽  
pp. 6227-6237 ◽  
Author(s):  
Z. Z. Deng ◽  
C. S. Zhao ◽  
N. Ma ◽  
L. Ran ◽  
G. Q. Zhou ◽  
...  

Abstract. Precise quantification of the cloud condensation nuclei (CCN) number concentration is crucial for understanding aerosol indirect effects and characterizing these effects in models. An evaluation of various methods for CCN parameterization was carried out in this paper based on in situ measurements of aerosol activation properties within HaChi (Haze in China) project. Comparisons were made by closure studies between methods using CCN spectra, bulk activation ratios, cut-off diameters and size-resolved activation ratios. The estimation of CCN number concentrations by the method using aerosol size-resolved activation ratios, either averaged over a day or with diurnal variation, was found to be most satisfying and straightforward. This could be well expected since size-resolved activation ratios include information regarding the effects of size-resolved chemical compositions and mixing states on aerosol activation properties. The method using the averages of critical diameters, which were inferred from measured CCN number concentrations and particle number size distributions, also provided a good prediction of the CCN number concentration. Based on comparisons of all these methods in this paper, it was recommended that the CCN number concentration be predicted using particle number size distributions with inferred critical diameters or size-resolved activation ratios.


Sign in / Sign up

Export Citation Format

Share Document