DOM DYNAMICS IN THE MEDITERRANEAN SEA. Can a new fluorescence SENSOR contribute to its understanding?

Author(s):  
Simona Retelletti Brogi ◽  
Marta Furia ◽  
Giancarlo Bachi ◽  
Vanessa Cardin ◽  
Giuseppe Civitarese ◽  
...  

<p>The Mediterranean Sea (Med Sea) can be considered as a natural laboratory for the study of dissolved organic matter (DOM) dynamics. Despite its small size, it is characterized by the same physical processes and dissolved organic carbon (DOC) concentration and distribution as the global ocean. The Med Sea deep water DOC pool is however older than the Atlantic one and differences in the microbial loop and in DOM dynamics have been observed between the eastern (EMED) and western (WMED) basins. Fluorescence is a fast, cheap and highly sensitive tool to study DOM dynamics, it can therefor give useful information about the main processes affecting DOM distribution.</p><p>The main aims of this study were: (i) to investigate DOM dynamics in both Med Sea basins, in relation to the physical processes (e.g. vertical stratification, irradiation); and (ii) to validate the use of a new fluorescence sensor, developed in the framework of the SENSOR project (POR FESR, Tuscany Region), for the rapid, in-situ measurements of open-sea fluorescent DOM (FDOM). DOM dynamics was investigated by measuring dissolved organic carbon (DOC) and the fluorescence of FDOM. Samples were collected from surface to bottom in 26 stations during the trans-Mediterranean cruise “MSM72”, carried out on board the R/V MARIA S.MERIAN (Institut für Meereskunde der Universität Hamburg). The stations cover both the EMED and the WMED, from Gibraltar to the Crete Island.</p><p>Six fluorescent components were identified by applying the parallel factorial analysis (PARAFAC) to the measured excitation-emission matrices (EEMs). Two components were identified as marine humic-like, two as terrestrial humic-like, one as protein-like and one as polycyclic aromatic hydrocarbon-like (PAH-like).</p><p>Temperature and salinity increased moving from the WMED to the EMED. A surface minimum in salinity, was observed in the WMED, indicating the occurrence of the Atlantic Water (AW), whereas the presence of the Levantine Intermediate Water (LIW) was observed south of Crete. The vertical distribution of both DOC and humic-like FDOM was strongly affected by the water masses circulation and water column stratification. In the upper 200 m, DOC markedly increased from 50 to 80 μM moving eastward, likewise the protein-like component dominates the upper layer and increased moving from Gibraltar to Crete. In contrast, the humic-like components showed a minimum in the surface layer, and a decreasing moving eastward, probably due to photobleaching. The PAH-like component showed its maximum in correspondence with the areas characterized by intensive naval traffic. The accumulation of DOC, observed in the EMED, could be explained by a change in DOM quality, supported by the differences in FDOM.</p><p>In 2 selected stations, the fluorescence of humic-like and protein-like compounds was also measured along the water column by using the new fluorescence sensor and compared with PARAFAC results, in order to evaluate its performance for open sea waters.</p>

2006 ◽  
Vol 31 ◽  
pp. 205-216 ◽  
Author(s):  
C Santinelli ◽  
BB Manca ◽  
GP Gasparini ◽  
L Nannicini ◽  
A Seritti

2015 ◽  
Vol 12 (8) ◽  
pp. 6147-6213
Author(s):  
A. Guyennon ◽  
M. Baklouti ◽  
F. Diaz ◽  
J. Palmieri ◽  
J. Beuvier ◽  
...  

Abstract. The Mediterranean Sea is one of the most oligotrophic regions of the oceans, and nutrients have been shown to limit both phytoplankton and bacterial activities. This has direct implications on the stock of dissolved organic carbon (DOC), whose high variability has already been well-documented even if measurements are still sparse and are associated with important uncertainties. We here propose a Mediterranean Basin-scale view of the export of organic carbon, under its dissolved and particulate forms. For this purpose, we have used a coupled model combining a mechanistic biogeochemical model (Eco3M-MED) and a high-resolution (eddy-resolving) hydrodynamic simulation (NEMO-MED12). This is the first Basin-scale application of the biogeochemical model Eco3M-MED and is shown to reproduce the main spatial and seasonal biogeochemical characteristics of the Mediterranean Sea. Model estimations of carbon export are of the same order of magnitude as estimations from in situ observations, and their respective spatial patterns are consistent with each other. As for surface chlorophyll, nutrient concentrations, and productivity, strong differences between the Western and Eastern Basins are evidenced by the model for organic carbon export, with only 39% of organic carbon (particulate and dissolved) export taking place in the Western Basin. The major result is that except for the Alboran Sea, dissolved organic carbon (DOC) contribution to organic carbon export is higher than that of particulate (POC) in the whole Basin, especially in the Eastern Basin. This paper also investigates the seasonality of DOC and POC exports as well as the differences in the processes involved in DOC and POC exports.


2020 ◽  
Author(s):  
Roy El Hourany ◽  
Chris Bowler ◽  
Carlos Mejia ◽  
Michel Crépon ◽  
Sylvie Thiria

<p>The regionalization of the Mediterranean Sea has been the subject of many studies. It is a miniature ocean where most of the processes of the global ocean are encountered (Lejeusne et al., 2010). Several features of the Mediterranean (near-tropical ocean in summer with a well-formed thermocline, near-polar ocean in winter with deep convection, multiple basins with different characteristics) make it a hotspot of marine biodiversity (Coll and al., 2010) and consequently vulnerable to climate change. It is therefore important to characterize the present state of the Mediterranean Sea with robust estimators in order to study the long-term evolution of this mesocosm.</p><p>We present a partitioning of the Mediterranean Sea in regions having well defined characteristics with respect to Sea Surface Temperature and surface chlorophyll observed by satellite, and Argo mixed layer depth. This regionalization was performed by using an innovative classification based on neural networks, the so-called 2S-SOM. Its major advantage is to consider the specificity of the variables by adding automatically, through machine learning, specific weights to each of them, which facilitates the classification and consequently highlights the regional correlations. The 2S-SOM provided a well differentiated regionalization of the Mediterranean Sea waters into seven bioregions governed by specific physical and biogeochemical processes such as Intermediate-water formation in the Aegean Sea, large surface currents in the Adriatic and the Alboran, deep winter convection phenomena in the Balearic and stratification phenomena during summer in the eastern part of the Mediterranean Sea.</p><p>Besides, in order to highlight the phytoplankton diversity in these regions, we processed the satellite ocean color observations with a specific neural network approach (SOM-PFT, El Hourany et al., 2019). As a result, specific phytoplankton communities characterized by their seasonal variability are associated with the obtained Mediterranean bioregions; the dominance of the Nanophytoplankton groups is largely observed in the western basin during the period ranging from autumn to spring. While the dominance of different types of cyanobacteria Synechococcus and Prochlorococcus is highlighted in summer and more precisely in the waters of the eastern basin. Diatoms dominate throughout the year in the coastal and shallow regions, which can be explained by the presence of terrigenous input necessary for the development of this type of phytoplankton. Diatoms also largely benefit from the strong deep convection in the Balearic Sea marked by a large bloom at the end of winter convection in March.</p><p>This work will be further extended to study the phytoplankton diversity at global scale using various data set from the Tara Oceans.</p>


2015 ◽  
Vol 7 (2) ◽  
pp. 231-237 ◽  
Author(s):  
D. Hainbucher ◽  
V. Cardin ◽  
G. Siena ◽  
U. Hübner ◽  
M. Moritz ◽  
...  

Abstract. We report on data from an oceanographic cruise in the Mediterranean Sea on the German research vessel Poseidon in April 2014. Data were taken on a west–east section, starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The objectives of the cruise were threefold: to contribute to the investigation of the spatial evolution of the Levantine Intermediate Water (LIW) properties and of the deep water masses in the eastern Mediterranean Sea, and to investigate the mesoscale variability of the upper water column. The measurements include salinity, temperature, oxygen and currents and were conducted with a conductivity, temperature and depth(CTD)/rosette system, an underway CTD and an acoustic Doppler current profiler (ADCP). The sections are on tracks which have been sampled during several other cruises, thus supporting the opportunity to investigate the long-term temporal development of the different variables. The use of an underway CTD made it possible to conduct measurements of temperature and salinity with a high horizontal spacing of 6 nm between stations and a vertical spacing of 1 dbar for the upper 800 m of the water column.


2021 ◽  
Vol 8 ◽  
Author(s):  
Neele Schmidt ◽  
Yusuf C. El-Khaled ◽  
Felix I. Roßbach ◽  
Christian Wild

In the Mediterranean Sea, the fleshy red alga Phyllophora crispa forms dense mats of up to 15 cm thickness, mainly located on rocky substrates in water depths below 20 m. Because of the observed density of these mats and some first observations, we hypothesize that P. crispa is a yet undescribed ecosystem engineer that provides a multitude of ecological niches for associated organisms along small-scale environmental gradients. Therefore, we conducted an in-situ pilot study in the Western Mediterranean Sea to assess potential influence of the algae mats on the key environmental factors water movement, temperature and light intensity. We comparatively and simultaneously measured in P. crispa mats, in neighboring Posidonia oceanica seagrass meadows, on neighboring bare rocky substrates without algae mats, and in the directly overlying water column. We used several underwater logging sensors and gypsum clod cards. Findings revealed that P. crispa significantly reduced water movement by 41% compared to the overlying water column, whereas water movement was not affected by P. oceanica meadows and bare rocky substrates. Surprisingly, P. crispa increased the water temperature by 0.3°C relative to the water column, while the water temperature in P. oceanica and on bare rocky substrates was reduced by 0.5°C. Light intensity inside the red algae mats was reduced significantly by 69% compared to the water column. This was similar to measured light reduction of 77% by P. oceanica. These findings highlight the strong influence of the dense red algae mats on some key environmental factors. Their influence is obviously similar or even higher than for the well-known seagrass ecosystem engineer. This may be a factor that facilitates associated biodiversity similarly as described for P. oceanica.


2021 ◽  
Author(s):  
Giusy Fedele ◽  
Elena Mauri ◽  
Giulio Notarstefano ◽  
Pierre Marie Poulain

Abstract. The Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. In particular, their variability and interaction, along with other water masses that characterize the Mediterranean basin, such as the Western Mediterranean Deep Water (WMDW), contribute to modify the Mediterranean Outflow through the Gibraltar Strait and hence may influence the stability of the global thermohaline circulation. This work aims to characterize the AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. Using different diagnostics, the AW and LIW were identified, highlighting the inter-basin variability and the strong zonal gradient that characterize the two water masses in this marginal sea. Their temporal variability was also investigated focusing on trends and spectral features which constitute an important starting point to understand the mechanisms that are behind their variability. A clear salinification and warming trend have characterized the AW and LIW in the last two decades (~0.007 and 0.008 yr−1; 0.018 and 0.007 °C yr−1, respectively). The salinity and temperature trends found at subbasin scale are in good agreement with previous results. The strongest trends are found in the Adriatic basin in both the AW and LIW properties. A subbasin dependent spectral variability emerges in the AW and LIW salinity timeseries with peaks between 2 and 10 years.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2658
Author(s):  
Nixon Bahamon ◽  
Jacopo Aguzzi ◽  
Miguel Ángel Ahumada-Sempoal ◽  
Raffaele Bernardello ◽  
Charlotte Reuschel ◽  
...  

Since 2014, the global land and sea surface temperature has scaled 0.23 °C above the decadal average (2009–2018). Reports indicate that Mediterranean Sea temperatures have been rising at faster rates than in the global ocean. Oceanographic time series of physical and biogeochemical data collected from an onboard and a multisensor mooring array in the northwestern Mediterranean Sea (Blanes submarine canyon, Balearic Sea) during 2009–2018 revealed an abrupt temperature rising since 2014, in line with regional and global warming. Since 2014, the oligotrophic conditions of the water column have intensified, with temperature increasing 0.61 °C on the surface and 0.47 °C in the whole water column in continental shelf waters. Water transparency has increased due to a decrease in turbidity anomaly of −0.1 FTU. Since 2013, inshore chlorophyll a concentration remained below the average (−0.15 mg·l−1) and silicates showed a declining trend. The mixed layer depth showed deepening in winter and remained steady in summer. The net surface heat fluxes did not show any trend linked to the local warming, probably due to the influence of incoming offshore waters produced by the interaction between the Northern Current and the submarine canyon. Present regional and global water heating pattern is increasing the stress of highly diverse coastal ecosystems at unprecedented levels, as reported by the literature. The strengthening of the oligotrophic conditions in the study area may also apply as a cautionary warning to similar coastal ecosystems around the world following the global warming trend.


1987 ◽  
Vol 21 (1) ◽  
pp. 51-74 ◽  
Author(s):  
C Jeandel ◽  
M Caisso ◽  
J.F Minster

Sign in / Sign up

Export Citation Format

Share Document