scholarly journals Properties of Suprathermal-through-Energetic He Ions Associated with Stream Interaction Regions Observed over Parker Solar Probe’s First Two Orb¬¬its

Author(s):  
Mihir Desai ◽  

<p>The Integrated Science Investigation of the Sun (IS☉IS) suite on board NASA’s Parker Solar Probe (PSP) observed six distinct enhancements in the intensities of suprathermal-through-energetic (~0.03-3 MeV nucleon<sup>-1</sup>) He ions associated with corotating or stream interaction regions during its first two orbits. Our results from a survey of the time-histories of the He intensities, spectral slopes, and anisotropies, and the event-averaged energy spectra during these events show: 1) In the two strongest enhancements, seen at 0.35 au and 0.85 au, the higher energy ions arrive and maximize later than those at lower energies. In the event seen at 0.35 au, the He ions arrive when PSP was away from the SIR trailing edge and entered the rarefaction region in the high-speed stream; 2) The He intensities are either isotropic or show sunward anisotropies in the spacecraft frame; and 3) In all events, the energy spectra between ~0.2–1 MeV nucleon<sup>-1</sup>are power-laws of the form ∝E<sup>-2</sup>. In the two strongest events, the energy spectra are well represented by flat power-laws between ~0.03–0.4 MeV nucleon<sup>-1</sup>modulated by exponential roll-overs between ~0.4–3 MeV nucleon<sup>-1</sup>. We conclude that the SIR-associated He ions originate from sources or shocks beyond PSP’s location rather than from acceleration processes occurring atnearby portions of local compression regions. Our results also suggest that rarefaction regions that typically follow the SIRs facilitate easier particle transport throughout the inner heliosphere such that low energy ions do not undergo significant energy loss due to adiabatic deceleration, contrary to predictions of existing models.</p>

2020 ◽  
Author(s):  
Nathan Schwadron ◽  

<p>NASA’s Parker Solar Probe (PSP) mission recently plunged through the inner heliosphere to perihelia at ~24 million km (~35 solar radii), much closer to the Sun than any prior human made object. Onboard PSP, the Integrated Science Investigation of the Sun (ISʘIS) instrument suite made groundbreaking measurements of solar energetic particles (SEPs). Here we discuss the near-Sun energetic particle radiation environment over PSP’s first two orbits, which reveal where and how energetic particles are energized and transported. We find a great variety of energetic particle events accelerated both locally and remotely. These include co-rotating interaction regions (CIRs), “impulsive” SEP events driven by acceleration near the Sun, and events related to Coronal Mass Ejections (CMEs). These ISʘIS observations made so close to the Sun provide critical information for investigating the near-Sun transport and energization of solar energetic particles that was difficult to resolve from prior observations. We discuss the physics of particle acceleration and transport in the context of various theories and models that have been developed over the past decades. This study marks a major milestone with humanity’s reconnaissance of the near-Sun environment and provides the first direct observations of the energetic particle radiation environment in the region just above the corona.</p>


2020 ◽  
Author(s):  
Timofey Sagitov ◽  
Roman Kislov

<p>High speed streams originating from coronal holes are long-lived plasma structures that form corotating interaction regions (CIRs) or stream interface regions (SIRs) in the solar wind. The term CIR is used for streams existing for at least one solar rotation period, and the SIR stands for streams with a shorter lifetime. Since the plasma flows from coronal holes quasi-continuously, CIRs/SIRs simultaneously expand and rotate around the Sun, approximately following the Parker spiral shape up to the Earth’s orbit.</p><p>Coronal hole streams rotate not only around the Sun but also around their own axis of simmetry, resembling a screw. This effect may occur because of the following mechanisms: (1) the existence of a difference between the solar wind speed at different sides of the stream, (2) twisting of the magnetic field frozen into the plasma, and  (3) a vortex-like motion of the edge of the mothering coronal hole at the Sun. The screw type of the rotation of a CIR/SIR can lead to centrifugal instability if CIR/SIR inner layers have a larger angular velocity than the outer. Furthermore, the rotational plasma movement and the stream distortion can twist magnetic field lines. The latter contributes to the pinch effect in accordance with a well-known criterion of Suydam instability (Newcomb, 1960, doi: 10.1016/0003-4916(60)90023-3). Owing to the presence of a cylindrical current sheet at the boundary of a coronal hole, conditions for tearing instability can also appear at the CIR/SIR boundary. Regardless of their geometry, large scale current sheets are subject to various instabilities generating plasmoids. Altogether, these effects can lead to the formation of a turbulent region within CIRs/SIRs, making them filled with current sheets and plasmoids. </p><p>We study a substructure of CIRs/SIRs, characteristics of their rotation in the solar wind, and give qualitative estimations of possible mechanisms which lead to splitting of the leading edge a coronal hole flow and consequent formation of current sheets within CIRs/SIRs.</p>


2020 ◽  
Author(s):  
Beatriz Sanchez-Cano ◽  
Richard Moissl ◽  
Daniel Heyner ◽  
Juhani Huovelin ◽  
M. Leila Mays ◽  
...  

<p>Planetary Space Weather is the discipline that studies the state of the Sun and how it interacts with the interplanetary and planetary environments. It is driven by the Sun’s activity, particularly through large eruptions of plasma (known as coronal mass ejections, CMEs), solar wind stream interaction regions (SIR) formed by the interaction of high-speed solar wind streams with the preceding slower solar wind, and bursts of solar energetic particles (SEPs) that form radiation storms. This is an emerging topic, whose real-time forecast is very challenging because among other factors, it needs a continuous coverage of its variability within the whole heliosphere as well as of the Sun’s activity to improve forecasting. <br />The long cruise of BepiColombo constitutes an exceptional opportunity for studying the Space Weather evolution within half-astronomical unit (AU), as well as in certain parts of its journey, can be used as an upstream solar wind monitor for Venus, Mars and even the outer planets. This work will present preliminary results of the Space Weather conditions encountered by BepiColombo since its launch until mid-2020, which includes data from the solar minimum of activity and few slow solar wind structures. Data come from three of its instruments that are operational for most of the cruise phase, i.e., the BepiColombo Radiation Monitor (BERM), the Mercury Planetary Orbiter Magnetometer (MPO-MAG), and the Solar Intensity X-ray and particle Spectrometer (SIXS). Modelling support for the data observations will be also presented with the so-called solar wind ENLIL simulations.</p>


2001 ◽  
Vol 203 ◽  
pp. 525-532
Author(s):  
R. G. Marsden

Launched in October 1990, the ESA-NASA Ulysses mission has conducted the very first survey of the heliosphere within 5 AU of the Sun over the full range of heliolatitudes. The first polar passes took place in 1994 and 1995, enabling Ulysses to characterise the global structure of the heliosphere at solar minimum, when the corona adopts its simplest configuration. The most important findings to date include a confirmation of the uniform nature of the high-speed (~ 750 km s−1) solar wind flow from the polar coronal holes, filling two-thirds of the volume of the inner heliosphere; the sharp boundary, existing from the chromosphere through the corona, between fast and slow solar wind streams; the latitude independence of the radial component of the heliospheric magnetic field; the lower-than-expected latitude gradient of galactic and anomalous cosmic rays; the continued existence of recurrent increases in the flux of low-energy ions and electrons up to the highest latitudes.


2021 ◽  
Author(s):  
Roman Kislov ◽  
Timothy Sagitov ◽  
Helmi Malova

<p>High-speed flows from coronal holes are separated from the surrounding solar wind by stream or corotating interaction regions (SIRs/CIRs). The latter have a complex dynamic structure, which is determined by turbulence, the presence of current sheets and magnetic islands/flux ropes/blobs/plasmoids. As the Sun rotates, SIRs along with high-speed flows propagate in the heliosphere. A SIR can be considered as a single large-scale object resembling a magnetic tube with walls of varying thickness. In this case, one can think not only about the speed of the plasma flow inside and near the given object, but also about its movement around the Sun as a whole. Because of this rotation, SIRs can cross the orbits of two separated spacecraft, which may allow one to study the spatial evolution of their structure. We have chosen the events when SIRs were sequentially detected by ACE and one of the STEREO spacecraft. In each case, a position of the Stream Interface (SI) was found, relative to which the position of other structures within the SIR was determined. Using a newly developed method for identifying current sheets [Khabarova et al. 2021], the SIR fine structure and the properties of turbulent plasma flow were studied. The estimates of the angular velocity of rotation SIR around the Sun are given. A model is constructed that describes the motion of SIRs in the heliosphere and their main large-scale properties.</p><p>Khabarova O., Sagitov T., Kislov R., Li G. (2021), http://arxiv.org/abs/2101.02804</p>


1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.


Nanoscale ◽  
2020 ◽  
Author(s):  
Fuping Zhang ◽  
Weikang Liu ◽  
Li Chen ◽  
Zhiqiang Guan ◽  
Hongxing Xu

he plasmonic waveguide is the fundamental building block for high speed, large data transmission capacity, low energy consumption optical communication and sensing. Controllable fabrication and simultaneously optimization of the propagation...


Sign in / Sign up

Export Citation Format

Share Document