Extreme concentrations of fine particulate matter and black carbon during commute

Author(s):  
Veronika S. Brand ◽  
Thiago Nogueira ◽  
Prashant Kumar ◽  
Maria de Fatima Andrade

<p>Commuters are vulnerable to traffic air pollutants, especially to fine particulate matter (PM<sub>2.5</sub>) and black carbon (BC) because of their proximity to on-road vehicles. Both pollutants have been extensively associated to adverse health effects (i.e., stroke, diabetes, cardiovascular and respiratory diseases, and cancer). Therefore, this work aims to investigate the extreme concentrations of PM<sub>2.5</sub> and BC occurrence in commuters in the megacity of São Paulo, Brazil. We carried out a field campaign measuring the commuter exposure to PM<sub>2.5</sub> and BC concentrations inside buses, cars and undergrounds in São Paulo during morning and evening peak-hours. We fitted an Extreme Value Distribution to the collected data to investigate the behavior of the extreme values in the different transport modes and periods of the day. The results suggest that higher concentrations of PM<sub>2.5</sub> and BC occur more frequently inside buses, followed by cars and undergrounds. Extreme concentrations for both pollutants are more likely to happen during morning peak-hours when compared to evening peak-hours. Our findings add further evidence that the transport mode and period of the day affect substantially the PM<sub>2.5</sub> and BC exposure in commuters. Furthermore, the results are quite useful for supporting urban policies that consider the improvement of the efficiency of air filtering systems inside public transport and private cars.</p>

2019 ◽  
Vol 21 (12) ◽  
pp. 2058-2069 ◽  
Author(s):  
Qian Zhang ◽  
Zhenxing Shen ◽  
Yali Lei ◽  
Tian Zhang ◽  
Yaling Zeng ◽  
...  

Summer and winter fine particulate matter (PM2.5) samples were collected to provide insight into the seasonal variations of the optical properties and source profiles of PM2.5 black carbon (BC) and brown carbon (BrC) in Xi'an, China.


2019 ◽  
Vol 198 ◽  
pp. 23-33 ◽  
Author(s):  
Ben Liu ◽  
Mandy Minle He ◽  
Cheng Wu ◽  
Jinjian Li ◽  
Ying Li ◽  
...  

Author(s):  
Mulugeta Tamire ◽  
Abera Kumie ◽  
Adamu Addissie ◽  
Mulugeta Ayalew ◽  
Johan Boman ◽  
...  

The use of solid fuel, known to emit pollutants which cause damage to human health, is the primary energy option in Ethiopia. Thus, the aim of this study was to measure the level of household air pollution by using the 24-h mean concentration of fine particulate matter (PM2.5) in 150 randomly recruited households in rural Butajira, Ethiopia. Data relating to household and cooking practices were obtained by conducting face-to-face interviews with the mothers. The 24-h mean (standard deviation) and median PM2.5 concentrations were 410 (220) and 340 µg/m3, respectively. Households using only traditional stoves and those who did not open the door or a window during cooking had a significantly higher mean concentration compared with their counterparts. There is a statistically significant correlation between the mean concentration of PM2.5 and the self-reported cooking duration. The pollution level was up to 16 times higher than the WHO 24-h guideline limit of 25 μg/m3, thus leaving the mothers and children who spend the most time at the domestic hearth at risk of the adverse health effects from solid fuel use in Ethiopia. Thus, effective short- and long-term interventions are urgently needed.


2020 ◽  
Author(s):  
Benjamin Aretz ◽  
Fanny Janssen ◽  
Judith M. Vonk ◽  
Michael T. Heneka ◽  
H. Marike Boezen ◽  
...  

ABSTRACTBackgroundExposure to fine particulate matter and black carbon is related to cognitive impairment and poor lung function, but less is known about the routes taken by different types of air pollutants to affect cognition.ObjectivesWe tested two possible routes of fine particulate matter (PM2.5) and black carbon (BC) in impairing cognition, and evaluated their importance: a direct route over the olfactory nerve or the blood stream, and an indirect route over the lung.MethodsWe used longitudinal observational data for 31232 people aged 18+ from 2006 to 2015 from the Dutch Lifelines cohort study. By linking current and past home addresses to air pollution exposure data from ELAPSE, long-term average exposure (≥ ten years) to PM2.5 and BC was calculated. Lung function was assessed by spirometry and Global Initiative (GLI) z-scores of forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were calculated. Cognitive performance was measured by cognitive processing time (CPT) assessed by the Cogstate Brief Battery. Linear structural equation modeling was performed to test the direct/indirect associations.ResultsHigher exposure to PM2.5 but not BC was directly related to higher CPT and thus slower cognitive processing speed [18.33 (×10−3) SD above the mean (95% CI: 6.84, 29.81)]. The direct association of PM2.5 constituted more than 97% of the total effect. Mediation by lung function was low for PM2.5 with a mediated proportion of 1.78% (FEV1) and 2.62% (FVC), but higher for BC (28.49% and 46.22% respectively).DiscussionOur results emphasize the importance of the lung acting as a mediator in the relationship between both exposure to PM2.5 and BC, and cognitive performance. However, higher exposure to PM2.5 was mainly directly associated with worse cognitive performance, which emphasizes the health-relevance of fine particles due to their ability to reach vital organs directly.


2007 ◽  
Vol 16 (6) ◽  
pp. 649 ◽  
Author(s):  
David Lavoué ◽  
Sunling Gong ◽  
Brian J. Stocks

The present paper proposes an original approach to estimate gaseous and particulate emissions from boreal forest fires based on the Canadian Forest Fire Behaviour Prediction (FBP) System. The FBP System permits calculation of fuel consumption and rate of spread for individual fires on an hourly basis from meteorological conditions and fuel patterns. Weather data are obtained by running the Canadian weather forecast model GEM (Global Environmental Multiscale). Hourly emission point sources can then be generated from a given wildfire database. The smoke emission model was first applied to the boreal forest fires in Quebec in the summer of 2002. Geographical distribution and temporal variability of emission amounts, as well as injection heights, were assessed hourly. In July, ~150 wildfires released 39 Mt of CO2 equivalent of greenhouse gases and 470 kt of fine particulate matter to the atmosphere. They contributed 32 and 5% of Quebec’s and Canada’s annual greenhouse gas emissions, respectively. Black carbon was estimated to account for 4% of the total fine particulate matter. Wildfires were responsible for 51 and 90% of all Canada’s black carbon and particulate organic matter sources, respectively.


2012 ◽  
Vol 13 (3) ◽  
pp. 705-715 ◽  
Author(s):  
Marko Tainio ◽  
Katarzyna Juda-Rezler ◽  
Magdalena Reizer ◽  
Aleksander Warchałowski ◽  
Wojciech Trapp ◽  
...  

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Audrey Jane Gaskins ◽  
Kelvin C Fong ◽  
Yara Abu Awad ◽  
Lidia Minguez-Alarcón ◽  
Jorge E Chavarro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document