Land Subsidence In Jharia Coalfields, Jharkhand, India – Detection, Estimation And Analysis Using Persistent Scatterer Interferometry

Author(s):  
Vamshi Krishna Rao Karanam ◽  
Mahdi Motagh ◽  
Kamal Jain

<p>Subsidence due to coal mining is an increasingly prominent concern in the management of the coalfields. Jharia coalfields, Jharkhand are the oldest and one of the largest coalfields in India. Due to poor management of the coal mines in the past, land subsidence due to coal fires has become a common phenomenon in Jharia. Throughout the year, several factors such as coal fires, seepage of rainwater into mines, and illegal settlements above the abandoned mines contribute to the mining-induced subsidence. Due to such varied causes, subsidence in mining areas is temporally and spatially irregular. Traditional techniques using GPS, leveling, and total station are tedious, time-consuming, and can measure subsidence only on a point basis.</p><p>From the past few years, Interferometric Synthetic Aperture Radar (InSAR) has become a powerful tool to calculate and monitor the land subsidence. Persistent Scatterer Interferometry (PSI) is an advanced time-series interferometry technique, which calculates temporal deformation rates at mm scale with the help of stable pixels in the dataset referred to as Persistent Scatterers. The study aims at the detection and estimation of land subsidence in Jharia coalfield, Jharkhand, India, using the Persistent Scatterer Interferometry (PSI) technique. We used 30 C Band Sentinel-1 SAR images acquired in TOPSAR mode for a period of two years from 2017 to 2019, captured in a descending direction. Data acquired during the dry season are preferred to ensure good coherence. Potential subsidence zones are identified and demarcated using the Differential Interferometry technique in SNAP. PSI analysis is carried out using the StaMPS method. High temporal decorrelation due to the surrounding agricultural land cover and atmospheric interference are significant challenges for the PSI analysis in mining areas. The temporal baseline is adapted accordingly to reduce de-correlation. Atmospheric interference is removed using the TRAIN toolbox using the GACOS correction model. The results show an average subsidence rate in Jharia coal mines of approximately 4 cm/yr. Among the 23 underground mines in Jharia, 6 mines are subsiding at the maximum rate of 12 cm/yr. We identified subsidence in several small coal mines in multiple locations surrounding settlements and agricultural areas that can lead to contamination of groundwater when collapsed. Kustore underground mine covering an area of 1.2 sq. km is the largest subsidence zone in the study area just 200 meters away from the settlements.</p>

2021 ◽  
Author(s):  
Vamshi Karanam ◽  
Shagun Garg ◽  
Mahdi Motagh ◽  
Kamal Jain

<p>Coal fires, land subsidence, roof collapse, and other life-threatening risks are a predictable phenomenon for the mineworkers and the neighbourhood population in coalfields. Jharia Coalfields in India are suffered heavily from land subsidence and coal fires for over a century. In addition to the loss of precious coal reserves, this has led to severe damage to the environment, livelihood, transportation, and precious lives.</p><p>Such incidents highlight the dire need for a well-defined methodology for risk analysis for the coalfield. In this study, we regenerated a Land Use Land Cover map prepared using Indian Remote Sensing satellite imagery and ground survey. Persistent Scatterer Interferometry analysis using Sentinel -1 images was carried out to study the land subsidence phenomenon between Nov 2018 and Apr 2019. For the same study period, coal fire zones were identified with Landsat – 8 thermal band imagery. Integration of coal fire maps, subsidence velocity maps, and land use maps was further implemented in a geographical information background environment to extract the high-risk zones. These high-risk areas include residential areas, railways, and mining sites, requiring immediate attention.</p><p>The results show that the coal mines are affected by subsidence of up to 20 cm/yr and a temperature anomaly of nearly 20<sup>o</sup>C is noticed. A high-risk zone of almost 18 sq. km. was demarcated with Kusunda, Gaslitand, and West Mudidih collieries being the most critically affected zones in the Coal mines. The study demonstrates the potential to combine data from multiple satellite sensors to build a safer ecosystem around the coal mines.  </p>


2019 ◽  
Vol 11 (14) ◽  
pp. 1675 ◽  
Author(s):  
Tomás ◽  
Pagán ◽  
Navarro ◽  
Cano ◽  
Pastor ◽  
...  

This work describes a new procedure aimed to semi-automatically identify clusters of active persistent scatterers and preliminarily associate them with different potential types of deformational processes over wide areas. This procedure consists of three main modules: (i) ADAfinder, aimed at the detection of Active Deformation Areas (ADA) using Persistent Scatterer Interferometry (PSI) data; (ii) LOS2HV, focused on the decomposition of Line Of Sight (LOS) displacements from ascending and descending PSI datasets into vertical and east-west components; iii) ADAclassifier, that semi-automatically categorizes each ADA into potential deformational processes using the outputs derived from (i) and (ii), as well as ancillary external information. The proposed procedure enables infrastructures management authorities to identify, classify, monitor and categorize the most critical deformations measured by PSI techniques in order to provide the capacity for implementing prevention and mitigation actions over wide areas against geological threats. Zeri, Campiglia Marittima–Suvereto and Abbadia San Salvatore (Tuscany, central Italy) are used as case studies for illustrating the developed methodology. Three PSI datasets derived from the Sentinel-1 constellation have been used, jointly with the geological map of Italy (scale 1:50,000), the updated Italian landslide and land subsidence maps (scale 1:25,000), a 25 m grid Digital Elevation Model, and a cadastral vector map (scale 1:5,000). The application to these cases of the proposed workflow demonstrates its capability to quickly process wide areas in very short times and a high compatibility with Geographical Information System (GIS) environments for data visualization and representation. The derived products are of key interest for infrastructures and land management as well as decision-making at a regional scale.


Author(s):  
R. Bonì ◽  
C. Meisina ◽  
C. Perotti ◽  
F. Fenaroli

Abstract. A methodology based on Persistent Scatterer Interferometry (PSI) is proposed in order to disentangle the contribution of different processes that act at different spatio-temporal scales in land subsidence (i.e. vadose zone processes as swelling/shrinkage of clay soils, soil consolidation and fluid extraction). The methodology was applied in different Italian geological contexts characterized by natural and anthropic processes (i.e. a Prealpine valley and the Po Plain in northern Italy).


2020 ◽  
Vol 12 (22) ◽  
pp. 3822
Author(s):  
María Inés Navarro-Hernández ◽  
Roberto Tomás ◽  
Juan M. Lopez-Sanchez ◽  
Abraham Cárdenas-Tristán ◽  
Jordi J. Mallorquí

The San Luis Potosi metropolitan area has suffered considerable damage from land subsidence over the past decades, which has become visible since 1990. This paper seeks to evaluate the effects of groundwater withdrawal on land subsidence in the San Luis Potosi Valley and the development of surface faults due to the differential compaction of sediments. For this purpose, we applied the Coherent Pixels Technique (CPT), a Persistent Scatterer Interferometry (PSI) technique, using 112 Sentinel-1 acquisitions from October 2014 to November 2019 to estimate the deformation rate. The results revealed that the deformation areas in the municipality of Soledad de Graciano Sánchez mostly exhibit subsidence values between −1.5 and −3.5 cm/year; whereas in San Luis Potosi these values are between −1.8 and −4.2 cm/year. The PSI results were validated by five Global Navigation Satellite System (GNSS) benchmarks available, providing a data correlation between the results obtained with both techniques of 0.986. This validation suggests that interferometric derived deformations agree well with results obtained from GNSS data. The strong relationship between trace fault, land subsidence,e and groundwater extraction suggests that groundwater withdrawal is resulting in subsidence induced faulting, which follows the pattern of structural faults buried by sediments.


2020 ◽  
Vol 12 (19) ◽  
pp. 3207
Author(s):  
Ioannis Papoutsis ◽  
Charalampos Kontoes ◽  
Stavroula Alatza ◽  
Alexis Apostolakis ◽  
Constantinos Loupasakis

Advances in synthetic aperture radar (SAR) interferometry have enabled the seamless monitoring of the Earth’s crust deformation. The dense archive of the Sentinel-1 Copernicus mission provides unprecedented spatial and temporal coverage; however, time-series analysis of such big data volumes requires high computational efficiency. We present a parallelized-PSI (P-PSI), a novel, parallelized, and end-to-end processing chain for the fully automated assessment of line-of-sight ground velocities through persistent scatterer interferometry (PSI), tailored to scale to the vast multitemporal archive of Sentinel-1 data. P-PSI is designed to transparently access different and complementary Sentinel-1 repositories, and download the appropriate datasets for PSI. To make it efficient for large-scale applications, we re-engineered and parallelized interferogram creation and multitemporal interferometric processing, and introduced distributed implementations to best use computing cores and provide resourceful storage management. We propose a new algorithm to further enhance the processing efficiency, which establishes a non-uniform patch grid considering land use, based on the expected number of persistent scatterers. P-PSI achieves an overall speed-up by a factor of five for a full Sentinel-1 frame for processing in a 20-core server. The processing chain is tested on a large-scale project to calculate and monitor deformation patterns over the entire extent of the Greek territory—our own Interferometric SAR (InSAR) Greece project. Time-series InSAR analysis was performed on volumes of about 12 TB input data corresponding to more than 760 Single Look Complex Sentinel-1A and B images mostly covering mainland Greece in the period of 2015–2019. InSAR Greece provides detailed ground motion information on more than 12 million distinct locations, providing completely new insights into the impact of geophysical and anthropogenic activities at this geographic scale. This new information is critical to enhancing our understanding of the underlying mechanisms, providing valuable input into risk assessment models. We showcase this through the identification of various characteristic geohazard locations in Greece and discuss their criticality. The selected geohazard locations, among a thousand, cover a wide range of catastrophic events including landslides, land subsidence, and structural failures of various scales, ranging from a few hundredths of square meters up to the basin scale. The study enriches the large catalog of geophysical related phenomena maintained by the GeObservatory portal of the Center of Earth Observation Research and Satellite Remote Sensing BEYOND of the National Observatory of Athens for the opening of new knowledge to the wider scientific community.


1969 ◽  
Vol 23 ◽  
pp. 41-44
Author(s):  
Stig A. Schack Pedersen ◽  
Geraint Cooksley ◽  
Marc Gaset ◽  
Peter Roll Jakobsen

Since 1991, a number of European satellites have acquired data of the Earth’s surface for environmental monitoring. In general, a satellite will orbit the Earth in about 1½ hours and it takes 35 days before an ERS or ENVISAT satellite repeats radar scanning of the same position. For younger generations of satellites, such as RADARSAT and TERRA, the scanning repeat interval has decreased to 24 and 11 days, respectively, so that hundreds of radar scenes of the same place, produced over the past c. 20 years, are now available.


2017 ◽  
Vol 50 (3) ◽  
pp. 1703
Author(s):  
A. Kaitantzian ◽  
C. Loupasakis

Land subsidence is a common phenomenon occurring in several regions worldwide.The current work focus on the industrial-commersial area of Eleonas, Athens, where vertical displacements were identified by Persistent Scatterer Interferometry (PSI) analysis. The rate of deformation in the study area according to the PSI results, during the period from May 1992 to December 2000, ranged between -1.5 and -10 mm/yr. The evaluation of the geological, geotechnical and hydrogeological conditions of the area combined with the PSI data provided substantial information for the interpretation of the land subsidence phenomenon. Also, the knowledge of the land use distribution and the activities taking place in the area helped the detection of its causal factors.


Sign in / Sign up

Export Citation Format

Share Document