Simulating debris flows triggered by rainfall in Shiyang gully, China

Author(s):  
Jiaoyang Li

<p>A debris flow occurred in Shiyang gully, located between Hebei Province and Beijing, on 8 June 2017, resulting in 6 people dead or injured. Short-term heavy rainfall is the main factor that triggered this event, however, the meteorological agency didn’t forecast this event very well. In this study, numerical simulation using FLO-2D was performed to reproduce the debris flow event (flow depths, flow velocities, and sediment depositions)occurred in 2017. The results of the field survey showed that the influential range of debris flow is consistent with the simulation results. Simulated depth accuracy is greater than 70%. Then, we used FLO-2D is calibrated to simulate debris flows disasters under different rainfall scenarios. The results showed that, the Beijing needs to be warned when the accumulated precipitation is 40mm at the rainfall intensity of 1mm/min. As cumulative rainfall and rainfall intensity increase, the risk of Shiyang gully is increasing.  This study used FLO-2D simulated process of debris flows triggered by rainfall. The results showed the early warning time and influential range for different intensity ,accumulated precipitation, and rain area, which is beneficial to the debris flow management in the western mountainous areas of Beijing.</p>

2020 ◽  
Vol 16 (1) ◽  
pp. 23-34
Author(s):  
Bayu Seto Waseso Utomo ◽  
Jati Iswardoyo ◽  
Ruzardi Ruzardi

The debris flow that happen on the of Mount Merapi is really hard to be seen, therefore, it is necessary to conduct laboratory-scale simulations to know when debris flows will happen as regard to rainfall intensity and the slope of Mount of Merapi. This research examines the correlation between the slope and the potential for debris flow at 25 mm/h rainfall intensity. This will be a reference for early warning of landslides on Mount of Merapi. This research uses a tool such as flume that sized 3 x 5 x 0,15 m as a model of slope of Mount of Merapi, and artificial rainfall apparatus as the rain simulator. The simulation is conducted using five years rainfall intensity of 25 mm/h in combination of slope i.e. 15, 20, 25, 30 and 35 degrees whereas the material used to represent the sediment is in form of sand taken from Gendol River upstream with 4,75 mm passing mesh sieves. The result of this simulation is the steeper the slope is, the faster the duration for the rain to cause debris flow. This research can be continued with change variation of rainfall intensity to understand the debris flows behavior. Keywords: Debris flow, Mount of Merapi, laboratory test, rainfall intensity, flume model


Author(s):  
Dong-Ho Nam ◽  
Suk-Ho Lee ◽  
Byung-Sik Kim

Ongoing climate change causes abnormal climate events worldwide such as increasing temperatures and changing rainfall patterns. With South Korea facing growing damage from the increased frequency of localized heavy rains, the country is not an exception. In particular, its steep slope lands, including mountainous areas, are vulnerable to damage from landslides and debris flows. In addition, localized short-term heavy rains that occur in urban areas with extremely high intensity tend to lead a sharp increase in damage from soil-related disasters and cause huge losses of life and property. Currently, South Korea predicts landslides and debris flows using the standards for forecasting landslides and heavy rains. However, as the forecasting is conducted separately for rainfall intensity and accumulated rainfall, this lacks a technique that reflects both amount and intensity of rainfall in an episode of localized heavy rainfall. This study, therefore, aims to develop such a technique by collecting past cases of debris flow occurrences and rainfall events that accompanied debris flows to calculate the rainfall triggering index (RTI) reflecting accumulated rainfall and rainfall intensity. In addition, the RTI is converted into the critical accumulated rainfall (Rc) to use precipitation information and provide real-time forecasting. The study classifies the standards for flow debris forecasting into three levels: ALERT (10%–50%), WARNING (50%–70%), and EMERGENCY (70% or higher), to provide a nomogram for 6 hr, 12 hr, and 24 hr. As a result of applying this classification into the actual cases of Seoul, Chuncheon, and Cheongju, it is found that about 2–4 hr of response time is secured from the point of the Emergency level to the occurrence of debris flows.


2021 ◽  
Vol 21 (9) ◽  
pp. 2773-2789
Author(s):  
Jacob Hirschberg ◽  
Alexandre Badoux ◽  
Brian W. McArdell ◽  
Elena Leonarduzzi ◽  
Peter Molnar

Abstract. The prediction of debris flows is relevant because this type of natural hazard can pose a threat to humans and infrastructure. Debris-flow (and landslide) early warning systems often rely on rainfall intensity–duration (ID) thresholds. Multiple competing methods exist for the determination of such ID thresholds but have not been objectively and thoroughly compared at multiple scales, and a validation and uncertainty assessment is often missing in their formulation. As a consequence, updating, interpreting, generalizing and comparing rainfall thresholds is challenging. Using a 17-year record of rainfall and 67 debris flows in a Swiss Alpine catchment (Illgraben), we determined ID thresholds and associated uncertainties as a function of record duration. Furthermore, we compared two methods for rainfall definition based on linear regression and/or true-skill-statistic maximization. The main difference between these approaches and the well-known frequentist method is that non-triggering rainfall events were also considered for obtaining ID-threshold parameters. Depending on the method applied, the ID-threshold parameters and their uncertainties differed significantly. We found that 25 debris flows are sufficient to constrain uncertainties in ID-threshold parameters to ±30 % for our study site. We further demonstrated the change in predictive performance of the two methods if a regional landslide data set with a regional rainfall product was used instead of a local one with local rainfall measurements. Hence, an important finding is that the ideal method for ID-threshold determination depends on the available landslide and rainfall data sets. Furthermore, for the local data set we tested if the ID-threshold performance can be increased by considering other rainfall properties (e.g. antecedent rainfall, maximum intensity) in a multivariate statistical learning algorithm based on decision trees (random forest). The highest predictive power was reached when the peak 30 min rainfall intensity was added to the ID variables, while no improvement was achieved by considering antecedent rainfall for debris-flow predictions in Illgraben. Although the increase in predictive performance with the random forest model over the classical ID threshold was small, such a framework could be valuable for future studies if more predictors are available from measured or modelled data.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2181
Author(s):  
Nam ◽  
Lee ◽  
Kim

Climate change causes extreme weather events worldwide such as increasing temperatures and changing rainfall patterns. With South Korea facing growing damage from the increased frequency of localized heavy rains. In particular, its steep slope lands, including mountainous areas, are vulnerable to damage from landslides and debris flows. In addition, localized short-term heavy rains that occur in urban areas with extremely high intensity tend to lead a sharp increase in damage from soil-related disasters and cause huge losses of life and property. Currently, South Korea forecasts landslides and debris flows using the standards for forecasting landslides and heavy rains. However, as the forecasting is conducted separately for rainfall intensity and accumulated rainfall, this lacks a technique that reflects both amount and intensity of rainfall in an episode of localized heavy rainfall. In this study, aims to develop such a technique by collecting past cases of debris flow occurrences and rainfall events that accompanied debris flows to calculate the rainfall triggering index (RTI) reflecting accumulated rainfall and rainfall intensity. In addition, the RTI is converted into the critical accumulated rainfall (Rc) to use rainfall information and provide real-time forecasting. The study classifies the standards for flow debris forecasting into three levels: ALERT (10–50%), WARNING (50–70%), and EMERGENCY (70% or higher), to provide a nomogram for 6 h, 12 h, and 24 h. As a result of applying this classification into the actual cases of Seoul, Chuncheon, and Cheongju, it is found that about 2–4 h of response time is secured from the point of the Emergency level to the occurrence of debris flows.


2017 ◽  
Vol 23 (4) ◽  
pp. 291-298
Author(s):  
Holly Brunkal ◽  
Paul Santi

Abstract Compilation of a database of debris-flow peak discharges (Q) allowed for a comparison with the expected basin discharge, as computed using the rational equation, Q=CIA. The observed values of Q for debris flows in unburned and burned areas were divided by the computed Q values of runoff using the rational method. This ratio is the bulking factor for that debris-flow event. Unburned and burned basins constitute two distinct populations; analysis shows that the bulking factors for burned areas are consistently higher than those for unburned basins. Previously published bulking factors for unburned areas fit the data set in about 50 percent of the observed cases in our compiled data set. Bulking factors for burned areas that were found in the published literature were well below the observed increases in peak discharge in over 50 percent of the cases investigated. If used for design purposes, these bulking factors would result in a significant underestimation of the peak discharge from a burned basin for the given rainfall intensity. Peak discharge bulking rates were found to be inversely related to basin area.


2000 ◽  
Vol 6 (1) ◽  
pp. 3-23 ◽  
Author(s):  
G. F. Wieczorek ◽  
B. A. Morgan ◽  
R. H. Campbell

Abstract The June 27, 1995, storm in Madison County, Virginia produced debris flows and floods that devastated a small (130 km 2 ) area of the Blue Ridge in the eastern United States. Although similar debris-flow inducing storm events may return only approximately once every two thousand years to the same given locale, these events affecting a similar small-sized area occur about every three years somewhere in the central and southern Appalachian Mountains. From physical examinations and mapping of debris-flow sources, paths, and deposits in Madison County, we develop methods for identifying areas subject to debris flows using Geographic Information Systems (GIS) technology. We examined the rainfall intensity and duration characteristics of the June 27, 1995, and other storms, in the Blue Ridge of central Virginia, and have defined a minimum threshold necessary to trigger debris flows in granitic rocks. In comparison with thresholds elsewhere, longer and more intense rainfall is necessary to trigger debris flows in the Blue Ridge.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuang Liu ◽  
Kaiheng Hu ◽  
Qun Zhang ◽  
Shaojie Zhang ◽  
Xudong Hu ◽  
...  

The impacts of destructive earthquakes on rainfall thresholds for triggering the debris flows have not yet been well investigated, due to lacks of data. In this study, we have collected the debris-flow records from the Wenchuan, Lushan, and Jiuzhaigou earthquake-affected areas in Sichuan Province, China. By using a meteorological dataset with 3 h and 0.1° resolutions, the dimensionless effective rainfall and rainfall intensity-duration relationships were calculated as the possible thresholds for triggering the debris flows. The pre- and post-seismic thresholds were compared to evaluate the impacts of the various intensities of earthquakes. Our results indicate that the post-quake thresholds are much smaller than the pre-seismic ones. The dimensionless effective rainfall shows the impacts of the Wenchuan, Lushan, and Jiuzhaigou earthquakes to be ca. 26, 27, and 16%, respectively. The Wenchuan earthquake has the most significant effect on lowering the rainfall intensity-duration curve. Rainfall threshold changes related to the moment magnitude and focal depth are discussed as well. Generally, this work may lead to an improved post-quake debris-flow warning strategy especially in sparsely instrumented regions.


Geografie ◽  
2015 ◽  
Vol 120 (1) ◽  
pp. 50-63
Author(s):  
Karel Šilhán ◽  
Tomáš Pánek ◽  
Jan Hradecký

There is a lack of information about enabling and triggering factors of debris flows in the densely populated coastal slopes of the Crimean Mountains. In such respect, it is useful to reconstruct a chronology of historical debris flow events and correlate them with time series of relevant meteorological characteristics. We utilized dendrogeomorphological methods using 566 individuals of Pinus nigra for inferring age of 215 debris flow events. The oldest event is dated to 1701 and the highest decadal frequency of debris flows (20 events) is determined to 1940s. Long periods with anomalously low temperatures generating sufficient amount of debris are a major factor enabling debris flow. The dominant triggering factor for regional (multiply) debris flow events are long-term periods with above-average precipitations, but local (isolated) events are more related to short-term periods (~one month) with above-average precipitations.


2021 ◽  
Author(s):  
Oliver Francis ◽  
Hui Tang ◽  
Carlo Gregoretti ◽  
Matteo Berti ◽  
Martino Bernard ◽  
...  

<p>Runoff-generated debris flows are a significant hazard in steep mountain ranges across the world. During intense rainfall storms, runoff can rapidly form in small steep basins and mobilise large volumes of sediment triggering debris flows which can damage infrastructure and endanger lives. A common method for forecasting debris flows is deriving empirical rainfall intensity–duration (ID) thresholds from previously recorded debris flow events in a given area. However, the storms which trigger debris flows usually are short and intense with high spatial variation making an accurate recording of the conditions responsible for initiation difficult.</p><p>In this study, we investigate the impact of the spatial variability of rainfall on debris flow initiation in small, steep, and debris flow prone catchments in the eastern Italian Alps (Dolomites) using the SWEHR (Shallow Water Equation Hairsine-Rose) numerical model. The modelled catchments are monitored by multiple rain gages which we use to quantify the uncertainty of the rainfall ID thresholds due to the spatial variation of rainfall by comparing empirical and numerically modelled thresholds. We also compare simulated triggering discharges for debris flows with available field observations in the study area. This study will help to improve the quality of hazard forecasting of debris flows in mountainous regions</p>


Sign in / Sign up

Export Citation Format

Share Document