Consideration of the Validity of Debris-flow Bulking Factors

2017 ◽  
Vol 23 (4) ◽  
pp. 291-298
Author(s):  
Holly Brunkal ◽  
Paul Santi

Abstract Compilation of a database of debris-flow peak discharges (Q) allowed for a comparison with the expected basin discharge, as computed using the rational equation, Q=CIA. The observed values of Q for debris flows in unburned and burned areas were divided by the computed Q values of runoff using the rational method. This ratio is the bulking factor for that debris-flow event. Unburned and burned basins constitute two distinct populations; analysis shows that the bulking factors for burned areas are consistently higher than those for unburned basins. Previously published bulking factors for unburned areas fit the data set in about 50 percent of the observed cases in our compiled data set. Bulking factors for burned areas that were found in the published literature were well below the observed increases in peak discharge in over 50 percent of the cases investigated. If used for design purposes, these bulking factors would result in a significant underestimation of the peak discharge from a burned basin for the given rainfall intensity. Peak discharge bulking rates were found to be inversely related to basin area.

2021 ◽  
Vol 21 (9) ◽  
pp. 2773-2789
Author(s):  
Jacob Hirschberg ◽  
Alexandre Badoux ◽  
Brian W. McArdell ◽  
Elena Leonarduzzi ◽  
Peter Molnar

Abstract. The prediction of debris flows is relevant because this type of natural hazard can pose a threat to humans and infrastructure. Debris-flow (and landslide) early warning systems often rely on rainfall intensity–duration (ID) thresholds. Multiple competing methods exist for the determination of such ID thresholds but have not been objectively and thoroughly compared at multiple scales, and a validation and uncertainty assessment is often missing in their formulation. As a consequence, updating, interpreting, generalizing and comparing rainfall thresholds is challenging. Using a 17-year record of rainfall and 67 debris flows in a Swiss Alpine catchment (Illgraben), we determined ID thresholds and associated uncertainties as a function of record duration. Furthermore, we compared two methods for rainfall definition based on linear regression and/or true-skill-statistic maximization. The main difference between these approaches and the well-known frequentist method is that non-triggering rainfall events were also considered for obtaining ID-threshold parameters. Depending on the method applied, the ID-threshold parameters and their uncertainties differed significantly. We found that 25 debris flows are sufficient to constrain uncertainties in ID-threshold parameters to ±30 % for our study site. We further demonstrated the change in predictive performance of the two methods if a regional landslide data set with a regional rainfall product was used instead of a local one with local rainfall measurements. Hence, an important finding is that the ideal method for ID-threshold determination depends on the available landslide and rainfall data sets. Furthermore, for the local data set we tested if the ID-threshold performance can be increased by considering other rainfall properties (e.g. antecedent rainfall, maximum intensity) in a multivariate statistical learning algorithm based on decision trees (random forest). The highest predictive power was reached when the peak 30 min rainfall intensity was added to the ID variables, while no improvement was achieved by considering antecedent rainfall for debris-flow predictions in Illgraben. Although the increase in predictive performance with the random forest model over the classical ID threshold was small, such a framework could be valuable for future studies if more predictors are available from measured or modelled data.


2020 ◽  
Author(s):  
Jiaoyang Li

<p>A debris flow occurred in Shiyang gully, located between Hebei Province and Beijing, on 8 June 2017, resulting in 6 people dead or injured. Short-term heavy rainfall is the main factor that triggered this event, however, the meteorological agency didn’t forecast this event very well. In this study, numerical simulation using FLO-2D was performed to reproduce the debris flow event (flow depths, flow velocities, and sediment depositions)occurred in 2017. The results of the field survey showed that the influential range of debris flow is consistent with the simulation results. Simulated depth accuracy is greater than 70%. Then, we used FLO-2D is calibrated to simulate debris flows disasters under different rainfall scenarios. The results showed that, the Beijing needs to be warned when the accumulated precipitation is 40mm at the rainfall intensity of 1mm/min. As cumulative rainfall and rainfall intensity increase, the risk of Shiyang gully is increasing.  This study used FLO-2D simulated process of debris flows triggered by rainfall. The results showed the early warning time and influential range for different intensity ,accumulated precipitation, and rain area, which is beneficial to the debris flow management in the western mountainous areas of Beijing.</p>


2020 ◽  
Vol 16 (1) ◽  
pp. 23-34
Author(s):  
Bayu Seto Waseso Utomo ◽  
Jati Iswardoyo ◽  
Ruzardi Ruzardi

The debris flow that happen on the of Mount Merapi is really hard to be seen, therefore, it is necessary to conduct laboratory-scale simulations to know when debris flows will happen as regard to rainfall intensity and the slope of Mount of Merapi. This research examines the correlation between the slope and the potential for debris flow at 25 mm/h rainfall intensity. This will be a reference for early warning of landslides on Mount of Merapi. This research uses a tool such as flume that sized 3 x 5 x 0,15 m as a model of slope of Mount of Merapi, and artificial rainfall apparatus as the rain simulator. The simulation is conducted using five years rainfall intensity of 25 mm/h in combination of slope i.e. 15, 20, 25, 30 and 35 degrees whereas the material used to represent the sediment is in form of sand taken from Gendol River upstream with 4,75 mm passing mesh sieves. The result of this simulation is the steeper the slope is, the faster the duration for the rain to cause debris flow. This research can be continued with change variation of rainfall intensity to understand the debris flows behavior. Keywords: Debris flow, Mount of Merapi, laboratory test, rainfall intensity, flume model


2021 ◽  
Author(s):  
Chuxuan Li ◽  
Alexander L. Handwerger ◽  
Jiali Wang ◽  
Wei Yu ◽  
Xiang Li ◽  
...  

Abstract. In steep wildfire-burned terrains, intense rainfall can produce large volumes of runoff that can trigger highly destructive debris flows. The ability to accurately characterize and forecast debris-flow hazards in burned terrains, however, remains limited. Here, we augment the Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate both overland and channelized flows and assess postfire debris-flow hazards over a regional domain. We perform hindcast simulations using high-resolution weather radar-derived precipitation and reanalysis data to drive non-burned baseline and burn scar sensitivity experiments. Our simulations focus on January 2021 when an atmospheric river triggered numerous debris flows within a wildfire burn scar in Big Sur – one of which destroyed California’s famous Highway 1. Compared to the baseline, our burn scar simulation yields dramatic increases in total and peak discharge, and shorter lags between rainfall onset and peak discharge. At Rat Creek, where Highway 1 was destroyed, discharge volume increases eight-fold and peak discharge triples relative to the baseline. For all catchments within the burn scar, we find that the median catchment-area normalized discharge volume increases nine-fold after incorporating burn scar characteristics, while the 95th percentile volume increases 13-fold. Catchments with anomalously high hazard levels correspond well with post-event debris flow observations. Our results demonstrate that WRF-Hydro provides a compelling new physics-based tool to investigate and potentially forecast postfire hydrologic hazards at regional scales.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2181
Author(s):  
Nam ◽  
Lee ◽  
Kim

Climate change causes extreme weather events worldwide such as increasing temperatures and changing rainfall patterns. With South Korea facing growing damage from the increased frequency of localized heavy rains. In particular, its steep slope lands, including mountainous areas, are vulnerable to damage from landslides and debris flows. In addition, localized short-term heavy rains that occur in urban areas with extremely high intensity tend to lead a sharp increase in damage from soil-related disasters and cause huge losses of life and property. Currently, South Korea forecasts landslides and debris flows using the standards for forecasting landslides and heavy rains. However, as the forecasting is conducted separately for rainfall intensity and accumulated rainfall, this lacks a technique that reflects both amount and intensity of rainfall in an episode of localized heavy rainfall. In this study, aims to develop such a technique by collecting past cases of debris flow occurrences and rainfall events that accompanied debris flows to calculate the rainfall triggering index (RTI) reflecting accumulated rainfall and rainfall intensity. In addition, the RTI is converted into the critical accumulated rainfall (Rc) to use rainfall information and provide real-time forecasting. The study classifies the standards for flow debris forecasting into three levels: ALERT (10–50%), WARNING (50–70%), and EMERGENCY (70% or higher), to provide a nomogram for 6 h, 12 h, and 24 h. As a result of applying this classification into the actual cases of Seoul, Chuncheon, and Cheongju, it is found that about 2–4 h of response time is secured from the point of the Emergency level to the occurrence of debris flows.


2021 ◽  
Author(s):  
Elijah Orland ◽  
Dalia Kirschbaum ◽  
Thomas Stanley

<p>As the risk of wildfires increases worldwide, burned steeplands are vulnerable to the secondary hazard of widespread sediment mobilization through debris flows. Following an initial burn, sediment and soil previously restrained by vegetation are no longer consolidated, allowing for easy mobilization into channels and along steep hillslopes through runoff.  Sufficiently powerful rainfall incorporates entrained material into turbulent flows and serves as the primary trigger for debris flow initiation. There is thus an ongoing need to establish the relationship between rainfall and debris flow initiation based on a variety of spatiotemporal preconditions. Previous work establishes regional and local thresholds to constrain the effect of rainfall in recently burned areas, but no empirical or numerical solution has worldwide application. Building from regionally-based efforts in the U.S., this work considers how remote sensing data can be applied to better approximate the post-fire debris flow hazards worldwide using freely available global datasets and software. Our work assesses the utility of remote sensing resources for analyzing burn characteristics, topography, rainfall intensity/duration, and, thus, debris flow initiation. Early results show that global observations are sufficient to delineate background rainfall rates from storms likely to cause debris flows across a variety of burn severity and topographic conditions. However, the dearth of publicly-available post-fire debris flow inventories globally limit the ability to test how the model framework performs within different climatologic and morphologic areas. This work will present preliminary analysis over the Western United States and demonstrate the feasibility of a global, near-real time model to provide situational awareness of potential hazards within recently burned areas worldwide. Future work will also consider how global or regional precipitation forecasts may increase the lead time for improved early warning of these hazards.</p>


2021 ◽  
Vol 27 (1) ◽  
pp. 73-85
Author(s):  
Paul M. Santi ◽  
Blaire Macaulay

ABSTRACT This work explores two hypotheses related to runoff-related post-wildfire debris flows: 1) their initiation is limited by rainstorm intensity rather than cumulative rainfall depths and 2) they are not sediment supply limited. The first hypothesis suggests that it is common to generate more than enough rainfall to account for the volume of water in the debris flow, but to actually produce a debris flow, the water must be delivered with sufficient intensity. This is demonstrated by data from 44 debris flows from eight burned areas in California, Colorado, and Utah. Assuming a debris flow comprises 30 percent water and 70 percent solids, these events were generated during rainstorms that produced an average of 17 times as much water as necessary to develop a debris flow. Even accounting for infiltration, the rainstorms still generated an overabundance of water. Intensity dependence is also shown by numerous cases in which the exact timing of debris flows can be pinpointed and is contemporaneous with high-intensity bursts of rainfall. The hypothesis is also supported by rainfall intensity-duration thresholds where high-volume storms without high-intensity bursts do not generate debris flows. The second hypothesis of sediment-supply independence for the initiation of debris flows is supported by a significant increase in flow volume occurring directly after wildfire, compared to flows in unburned terrain. Also, repeated flows within short time intervals are only possible with an abundance of channel sediment, dry ravel, and bank failure material that can be mobilized. Field observations confirm these sediment sources, even directly after a debris-flow.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1256 ◽  
Author(s):  
Xing-Long Gong ◽  
Kun-Ting Chen ◽  
Xiao-Qing Chen ◽  
Yong You ◽  
Jian-Gang Chen ◽  
...  

On 8 August 2017, an Ms 7.0 earthquake struck Jiuzhaigou Valley, triggering abundant landslides and providing a huge source of material for potential debris flows. After the earthquake debris flows were triggered by heavy rainfall, causing traffic disruption and serious property losses. This study aims to describe the debris flow events in Zechawa Gully, calculate the peak discharges of the debris flows, characterize the debris flow disasters, propose mitigation countermeasures to control these disasters and analyse the effectiveness of countermeasures that were implemented in May 2019. The results showed the following: (1) The frequency of the debris flows in Zechawa Gully with small- and medium-scale will increase due to the influence of the Ms 7.0 Jiuzhaigou earthquake. (2) An accurate debris flow peak discharge can be obtained by comparing the calculated results of four different methods. (3) The failure of a check dam in the channel had an amplification effect on the peak discharge, resulting in a destructive debris flow event on 4 August 2016. Due to the disaster risk posed by dam failure, both blocking and deposit stopping measures should be adopted for debris flow mitigation. (4) Optimized engineering countermeasures with blocking and deposit stopping measures were proposed and implemented in May 2019 based on the debris flow disaster characteristics of Zechawa Gully, and the reconstructed engineering projects were effective in controlling a post-earthquake debris flow disaster on 21 June 2019.


2000 ◽  
Vol 6 (1) ◽  
pp. 3-23 ◽  
Author(s):  
G. F. Wieczorek ◽  
B. A. Morgan ◽  
R. H. Campbell

Abstract The June 27, 1995, storm in Madison County, Virginia produced debris flows and floods that devastated a small (130 km 2 ) area of the Blue Ridge in the eastern United States. Although similar debris-flow inducing storm events may return only approximately once every two thousand years to the same given locale, these events affecting a similar small-sized area occur about every three years somewhere in the central and southern Appalachian Mountains. From physical examinations and mapping of debris-flow sources, paths, and deposits in Madison County, we develop methods for identifying areas subject to debris flows using Geographic Information Systems (GIS) technology. We examined the rainfall intensity and duration characteristics of the June 27, 1995, and other storms, in the Blue Ridge of central Virginia, and have defined a minimum threshold necessary to trigger debris flows in granitic rocks. In comparison with thresholds elsewhere, longer and more intense rainfall is necessary to trigger debris flows in the Blue Ridge.


2021 ◽  
Author(s):  
Victor Carvalho Cabral ◽  
Fábio Augusto Gomes Vieira Reis ◽  
Fernando Mazo D’Affonseca ◽  
Ana Lucía ◽  
Claudia Vanessa dos Santos Corrêa ◽  
...  

AbstractDebris flows represent great hazard to humans due to their high destructive power. Understanding their hydrogeomorphic dynamics is fundamental in hazard assessment studies, especially in subtropical and tropical regions where debris flows have scarcely been studied when compared to other mass-wasting processes. Thus, this study aims at systematically analyzing the meteorological and geomorphological factors that characterize a landslide-triggered debris flow at the Pedra Branca catchment (Serra do Mar, Brazil), to quantify the debris flow’s magnitude, peak discharge and velocity. A magnitude comparison with empirical equations (Italian Alps, Taiwan, Serra do Mar) is also conducted. The meteorological analysis is based on satellite data and rain gauge measurements, while the geomorphological characterization is based on terrestrial and aerial investigations, with high spatial resolution. The results indicate that it was a large-sized stony debris flow, with a total magnitude of 120,195 m3, a peak discharge of 2146.7 m3 s−1 and a peak velocity of 26.5 m s−1. The debris flow was triggered by a 188-mm rainfall in 3 h (maximum intensity of 128 mm h−1), with an estimated return period of 15 to 20 years, which, combined with the intense accumulation of on-channel debris (ca. 37,000 m3), indicates that new high-magnitude debris flows in the catchment and the region are likely to occur within the next two decades. The knowledge of the potential frequency and magnitude (F–M) can support the creation of F–M relationships for Serra do Mar, a prerequisite for reliable hazard management and monitoring programs.


Sign in / Sign up

Export Citation Format

Share Document