The elements of the thermodynamic structure of the tropical atmosphere

Author(s):  
Jiawei Bao ◽  
Bjorn Stevens

<p>Deep convection plays an important role in driving the large-scale circulation and the complex interaction between moist convection and the large-scale circulation regulates the thermodynamic structure of the tropical atmosphere.<span> </span></p><p>The convectional thoughts of the thermodynamic structure of the tropical atmosphere are that the horizontal temperature in the free troposphere is homogeneous, which is referred to as weak temperature gradient (WTG), while the vertical structure follows a moist-adiabatic lapse rate. However, it is not known how accurate WTG holds and which moist- adiabatic process the tropical atmosphere indeed experiences. This study centers around the horizontal and vertical structure of the tropical atmosphere and uses the global storm resolving simulations (GSRMs) from ICON at 2.5 km to investigate them</p><p>The virtual effect or the vapor buoyancy effect arises from that the molecular weight of water vapor is much smaller than that of dry air. With the same pressure and temperature, this virtual effect makes moist air lighter than dry air. As the horizontal buoyancy differences are eliminated by convection gravity waves, virtual temperature, a temperature variable including the moisture conditions, is expected to be homogeneous. Then, to obtain a homogeneous virtual temperature horizontally, the absolute temperature has to change to accommodate the horizontal moisture difference. The model results show that virtual temperature is relatively homogeneous at mid- and lower troposphere. Therefore, the virtual effect plays a very important role in the horizontal temperature structure, making the absolute temperature colder in moist regions and warmer in dry regions. However, in the upper troposphere, both the absolute temperature and the virtual temperature are not homogeneous, and vary as a function of moisture, indicating a weakening influence of convection gravity waves there.</p><p>We use saturation equivalent potential temperature (theta-es) to explore the vertical structure of the tropical atmosphere. Theta-es is expected to be conserved above the lifting condensation level (LCL) if calculated following the exact moist-adiabatic process that tropical atmosphere undergoes. The pseudo-adiabat and the reversible-adiabat with the effect of condensate loading are compared. To minimize the horizontal differences in theta-es due to moisture, we also define theta-es to account for the virtual effect and the condensate loading effect. The model results suggest that the actual moist-adiabatic process that tropical atmosphere experiences is between the pseudo-adiabat and the reversible-adiabat with the effect of condensate loading assuming air parcels originating from 972 hPa.<span> </span></p><p>The above results are broadly consistent with the results from ERA5 reanalysis.</p>

2021 ◽  
Author(s):  
Alejandra Sanchez-Franks ◽  
Eleanor Frajka-Williams ◽  
Ben Moat ◽  
David Smeed

<p>The large-scale system of ocean currents that transport warm surface (1000 m) waters northward and return cooler waters southward is known as the Atlantic meridional overturning circulation (AMOC). Variations in the AMOC have significant repercussions for the climate system, hence there is a need for long term monitoring of AMOC fluctuations. Currently the longest record of continuous directly measured AMOC changes is from the RAPID-MOCHA-WBTS programme, initiated in 2004. The RAPID programme, and other mooring programmes, have revolutionised our understanding of large-scale circulation, however, by design they are constrained to measurements at a single latitude.</p><p>High global coverage of surface ocean data from satellite altimetry is available since the launch of TOPEX/Poseidon satellite in 1992 and has been shown to provide reliable estimates of surface ocean transports on interannual time scales. Here we show that a direct calculation of ocean circulation from satellite altimetry compares well with transport estimates from the 26°N RAPID array on low frequency (18-month) time scales for the upper mid-ocean transport (UMO; r = 0.75), the Gulf Stream transport through the Florida Straits (r = 0.70), and the AMOC (r = 0.83). The vertical structure of the circulation is also investigated, and it is found that the first baroclinic mode accounts for 83% of the interior geostrophic variability, while remaining variability is explained by the barotropic mode. Finally, the UMO and the AMOC are estimated from historical altimetry data (1993 to 2018) using a dynamically based method that incorporates the vertical structure of the flow. The effective implementation of satellite-based method for monitoring the AMOC at 26°N lays down the starting point for monitoring large-scale circulation at all latitudes.</p>


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1321-1340
Author(s):  
Alejandra Sanchez-Franks ◽  
Eleanor Frajka-Williams ◽  
Ben I. Moat ◽  
David A. Smeed

Abstract. The large-scale system of ocean currents that transport warm waters in the upper 1000 m northward and return deeper cooler waters southward is known as the Atlantic meridional overturning circulation (AMOC). Variations in the AMOC have significant repercussions for the climate system; hence, there is a need for long-term monitoring of AMOC fluctuations. Currently the longest record of continuous directly measured AMOC changes is from the RAPID-MOCHA-WBTS programme, initiated in 2004. The RAPID programme and other mooring programmes have revolutionised our understanding of large-scale circulation; however, by design they are constrained to measurements at a single latitude and cannot tell us anything pre-2004. Nearly global coverage of surface ocean data from satellite altimetry has been available since the launch of the TOPEX/Poseidon satellite in 1992 and has been shown to provide reliable estimates of surface ocean transports on interannual timescales including previous studies that have investigated empirical correlations between sea surface height variability and the overturning circulation. Here we show a direct calculation of ocean circulation from satellite altimetry of the upper mid-ocean transport (UMO), the Gulf Stream transport through the Florida Straits (GS), and the AMOC using a dynamically based method that combines geostrophy with a time mean of the vertical structure of the flow from the 26∘ N RAPID moorings. The satellite-based transport captures 56 %, 49 %, and 69 % of the UMO, GS, and AMOC transport variability, respectively, from the 26∘ N RAPID array on interannual (18-month) timescales. Further investigation into the vertical structure of the horizontal transport shows that the first baroclinic mode accounts for 83 % of the interior geostrophic variability, and the combined barotropic and first baroclinic mode representation of dynamic height accounts for 98 % of the variability. Finally, the methods developed here are used to reconstruct the UMO and the AMOC for the time period pre-dating RAPID, 1993 to 2003. The effective implementation of satellite-based method for monitoring the AMOC at 26∘ N lays down the starting point for monitoring large-scale circulation at all latitudes.


2021 ◽  
Author(s):  
Alejandra Sanchez-Franks ◽  
Eleanor Frajka-Williams ◽  
Ben I. Moat ◽  
David A. Smeed

Abstract. The large-scale system of ocean currents that transport warm surface (1000 m) waters northward and return cooler waters southward is known as the Atlantic meridional overturning circulation (AMOC). Variations in the AMOC have significant repercussions for the climate system, hence there is a need for long term monitoring of AMOC fluctuations. Currently the longest record of continuous directly measured AMOC changes is from the RAPID-MOCHA-WBTS programme, initiated in 2004. The RAPID programme, and other mooring programmes, have revolutionised our understanding of large-scale circulation, however, by design they are constrained to measurements at a single latitude. High global coverage of surface ocean data from satellite altimetry is available since the launch of TOPEX/Poseidon satellite in 1992 and has been shown to provide reliable estimates of surface ocean transports on interannual time scales. Here we show that a direct calculation of ocean circulation from satellite altimetry compares well with transport estimates from the 26° N RAPID array on low frequency (18-month) time scales for the upper mid-ocean transport (UMO; r = 0.75), the Gulf Stream transport through the Florida Straits (r = 0.70), and the AMOC (r = 0.83). The vertical structure of the circulation is also investigated, and it is found that the first baroclinic mode accounts for 83 % of the interior geostrophic variability, while remaining variability is explained by the barotropic mode. Finally, the UMO and the AMOC are estimated from historical altimetry data (1993 to 2018) using a dynamically based method that incorporates the vertical structure of the flow. The effective implementation of satellite-based method for monitoring the AMOC at 26° N lays down the starting point for monitoring large-scale circulation at all latitudes.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


Author(s):  
Na Li ◽  
Baofeng Jiao ◽  
Lingkun Ran ◽  
Zongting Gao ◽  
Shouting Gao

AbstractWe investigated the influence of upstream terrain on the formation of a cold frontal snowband in Northeast China. We conducted numerical sensitivity experiments that gradually removed the upstream terrain and compared the results with a control experiment. Our results indicate a clear negative effect of upstream terrain on the formation of snowbands, especially over large-scale terrain. By thoroughly examining the ingredients necessary for snowfall (instability, lifting and moisture), we found that the release of mid-level conditional instability, followed by the release of low-level or near surface instabilities (inertial instability, conditional instability or conditional symmetrical instability), contributed to formation of the snowband in both experiments. The lifting required for the release of these instabilities was mainly a result of frontogenetic forcing and upper gravity waves. However, the snowband in the control experiment developed later and was weaker than that in the experiment without upstream terrain. Two factors contributed to this negative topographic effect: (1) the mountain gravity waves over the upstream terrain, which perturbed the frontogenetic circulation by rapidly changing the vertical motion and therefore did not favor the release of instabilities in the absence of persistent ascending motion; and (2) the decrease in the supply of moisture as a result of blocking of the upstream terrain, which changed both the moisture and instability structures leeward of the mountains. A conceptual model is presented that shows the effects of the instabilities and lifting on the development of cold frontal snowbands in downstream mountains.


1997 ◽  
Vol 15 (8) ◽  
pp. 1048-1056 ◽  
Author(s):  
R. L. Balthazor ◽  
R. J. Moffett

Abstract. A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A 'fast' dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the 'fast' AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.


2021 ◽  
Author(s):  
Alexander John Doyle ◽  
Thorwald Hendrik Matthias Stein ◽  
Andrew Turner

Sign in / Sign up

Export Citation Format

Share Document