scholarly journals Influence of the Upstream Terrain on the Formation of a Cold Frontal Snowband in Northeast China

Author(s):  
Na Li ◽  
Baofeng Jiao ◽  
Lingkun Ran ◽  
Zongting Gao ◽  
Shouting Gao

AbstractWe investigated the influence of upstream terrain on the formation of a cold frontal snowband in Northeast China. We conducted numerical sensitivity experiments that gradually removed the upstream terrain and compared the results with a control experiment. Our results indicate a clear negative effect of upstream terrain on the formation of snowbands, especially over large-scale terrain. By thoroughly examining the ingredients necessary for snowfall (instability, lifting and moisture), we found that the release of mid-level conditional instability, followed by the release of low-level or near surface instabilities (inertial instability, conditional instability or conditional symmetrical instability), contributed to formation of the snowband in both experiments. The lifting required for the release of these instabilities was mainly a result of frontogenetic forcing and upper gravity waves. However, the snowband in the control experiment developed later and was weaker than that in the experiment without upstream terrain. Two factors contributed to this negative topographic effect: (1) the mountain gravity waves over the upstream terrain, which perturbed the frontogenetic circulation by rapidly changing the vertical motion and therefore did not favor the release of instabilities in the absence of persistent ascending motion; and (2) the decrease in the supply of moisture as a result of blocking of the upstream terrain, which changed both the moisture and instability structures leeward of the mountains. A conceptual model is presented that shows the effects of the instabilities and lifting on the development of cold frontal snowbands in downstream mountains.

2018 ◽  
Vol 35 (7) ◽  
pp. 676-687 ◽  
Author(s):  
Ibtissame Abaidi ◽  
Eric Vernette

PurposeThe internet has made it possible to diffuse totally digitized products on a very large scale. The newspaper business is one of the sectors that has been most affected by this technological revolution. Given such products’ uneven commercial success, an analysis of the literature suggests that these mixed results could be explained by the digitized nature of the product combined with a price judged too high. Both these elements reduce the perceived global value of the digital support compared with the print version on paper. To test this proposition, the authors have constructed an experimental design, manipulating the format (digital newspaper vs. print newspaper) and the price (high vs low). The results show that newspaper digitization significantly reduces perceived global value for the consumer compared with the print format. The authors also show that the perceived intangibility of the product exerts a more complex effect on perceived global value: this effect depends on both the nature of the intangibility (mental vs physical) and the cost and benefit analysis.Design/methodology/approachAn experimental study was conducted with two factors: digitalization (print vs digital format) and price (low vs high). The authors carried out a mixed-factor variance analysis and follow Preacher and Hayes procedure to test the hypothesis. A sample of 387 undergraduate students was interviewed in laboratory.FindingsThe results show that newspaper digitization significantly reduces (i.e. destroys) perceived global value for the consumer (i.e. it destroys value), compared to the print format. The reuslts also show that the perceived intangibility of the product exerts a more complex effect on perceived global value: this effect depends at the same time on the nature of the intangibility (mental vs physical) and the account taken of costs and benefits.Originality/valueOne major result is the fact that digitizing newspaper strongly destroys its perceived global value for the consumer, compared to the physical alternative. To explain this phenomenon, the product’s perceived intangibility had been considered, as well as how this is related to the perceived costs and benefits. It appears that it has an overall direct negative effect on perceived value; therefore, the more a newspaper format is perceived as physically intangible, the more its perceived global value decreases. Results shows that this loss of value can be counteracted in two different ways, through the indirect effects of costs and benefits.


2014 ◽  
Vol 743 ◽  
pp. 1-31 ◽  
Author(s):  
Bruno Ribstein ◽  
Riwal Plougonven ◽  
Vladimir Zeitlin

AbstractThe paper contains a detailed study of the inertial instability of a barotropic Bickley jet on the $f$-plane in the continuously stratified primitive equations model, and a comparison of this essentially ageostrophic instability with the classical baroclinic one. Analytical and numerical investigation of the linear stability of the jet in the long-wave sector is performed for a range of Rossby and Burger numbers. The major results are that: (1) the standard symmetric inertial instability, appearing at high enough Rossby numbers, turns out to be the infinite-wavelength limit of an asymmetric inertial instability, this latter having the highest growth rate for a large range of vertical wavenumbers; (2) inertial instability coexists with the standard baroclinic instability, which becomes dominant at small Rossby numbers. Nonlinear saturation of the inertial instability of the jet with a superimposed random small-amplitude perturbation is then studied, using the Weather Research and Forecast model. It is shown that at first stages the inertial instability dominates. It is localized near the maximum of the anticyclonic shear and is associated with the highest attainable value of the vertical wavenumber. The saturation of the inertial instability leads to the homogenization of the geostrophic momentum in the unstable region. At later stages, another baroclinic instability develops, characterized by lower values of the vertical wavenumber. This instability saturates by forming large-scale vortices downstream. It is identified as the leading instability of a marginally inertially stable jet resulting from the initial one through homogenization of the geostrophic momentum. The rough scenario of the evolution of essentially ageostrophic jets is, thus, as follows: the inertial instability rapidly saturates and baroclinic instability takes over. It is shown that reorganization of the flow due to developing instabilities is an efficient source of inertia-gravity waves.


2021 ◽  
Author(s):  
Yuntao Wei ◽  
Zhaoxia Pu

AbstractA set of cloud-permitting-scale numerical simulations during January–February 2018 is used to examine the diurnal cycle (DC) of precipitation and near-surface variables (e.g., 2 m temperature, 10 m wind and convergence) over the Indo-Pacific Maritime Continent under the impacts of shore-orthogonal ambient winds (SOAWs). It is found that the DC of these variables and their variabilities of daily maxima, minima, and diurnal amplitudes vary over land, sea, and coastal regions. Among all variables, the DC of precipitation has the highest linear correlation with near-surface convergence (near-surface temperature) over coastal (noncoastal) regions. The correlations among the DCs of precipitation, wind, and heating are greater over the ocean than over land. Sine curves can model accurately the DCs of most variables over the ocean, but not over land. SOAWs act to influence the DC mainly by affecting the diurnal amplitude of the considered variables, with DC being stronger under more strengthened offshore SOAWs, though variable dependence and regional variability exist. Composite analysis over Sumatra reveals that under weak SOAWs, shallow clouds are dominant and cause a pre-moistening effect, supporting shallow-to-deep convection transition. A sea breeze circulation (SBC) with return flow aloft can develop rapidly. Cold pools are better able to trigger new updrafts and contribute to the upscale growth and inland migration of deep convection. In addition, warm gravity waves can propagate upward throughout the troposphere, thereby supporting a strong DC. In contrast, under strong SOAWs, both shallow and middle-high clouds prevail and persist throughout the day. The evolution of moistening and SBC is reduced, leading to weak variation in vertical motion and rainwater confined to the boundary layer. Large-scale winds, moisture, and convection are discussed to interpret how strong SOAWs affect the DC of Sumatra.


2015 ◽  
Vol 45 (5) ◽  
pp. 1376-1392 ◽  
Author(s):  
Eric Bembenek ◽  
Francis J. Poulin ◽  
Michael L. Waite

AbstractThe surface quasigeostrophic (SQG) model describes flows with surface buoyancy perturbations with no interior quasigeostrophic potential vorticity at small Rossby number Ro and O(1) Burger number, where quasigeostrophic dynamics are expected to hold. Numerical simulations of SQG dynamics have shown that vortices are frequently generated at small scales, which may have O(1) Rossby numbers and therefore may be beyond the limits of SQG. This paper examines the dynamics of an initially geostrophically balanced elliptical surface buoyancy perturbation in both the SQG model and the nonhydrostatic Boussinesq primitive equations (PE). In the case of very small Rossby number, it is confirmed that both models agree, as expected. For larger Ro, non-SQG effects emerge and as a result the solution of the PE deviates significantly from that of SQG. In particular, an increase in the Rossby number has the following effects: (i) the buoyancy filaments at the surface are stabilized in that they generate fewer secondary vortices; (ii) the core of the vortex experiences inertial instability, which results in a uniform buoyancy profile in its interior; (iii) the divergent part of the energy spectrum increases in magnitude; (iv) the PE model has significantly more gravity waves that are radiated from the vortex; (v) the magnitude of the vertical velocity increases; and (vi) in the mature stages of evolution, there are gravitational instabilities that develop because of the complicated dynamics inside the vortex. It is demonstrated that significant non-SQG effects are evident when the large-scale Rossby number of the initial flow is about 0.05 and the local Rossby number is O(1).


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
S. J. Eder ◽  
P. G. Grützmacher ◽  
M. Rodríguez Ripoll ◽  
J. F. Belak

Abstract Depending on the mechanical and thermal energy introduced to a dry sliding interface, the near-surface regions of the mated bodies may undergo plastic deformation. In this work, we use large-scale molecular dynamics simulations to generate “differential computational orientation tomographs” (dCOT) and thus highlight changes to the microstructure near tribological FCC alloy surfaces, allowing us to detect subtle differences in lattice orientation and small distances in grain boundary migration. The analysis approach compares computationally generated orientation tomographs with their undeformed counterparts via a simple image analysis filter. We use our visualization method to discuss the acting microstructural mechanisms in a load- and time-resolved fashion, focusing on sliding conditions that lead to twinning, partial lattice rotation, and grain boundary-dominated processes. Extracting and laterally averaging the color saturation value of the generated tomographs allows us to produce quantitative time- and depth-resolved maps that give a good overview of the progress and severity of near-surface deformation. Corresponding maps of the lateral standard deviation in the color saturation show evidence of homogenization processes occurring in the tribologically loaded microstructure, frequently leading to the formation of a well-defined separation between deformed and undeformed regions. When integrated into a computational materials engineering framework, our approach could help optimize material design for tribological and other deformation problems. Graphic Abstract .


1997 ◽  
Vol 15 (8) ◽  
pp. 1048-1056 ◽  
Author(s):  
R. L. Balthazor ◽  
R. J. Moffett

Abstract. A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A 'fast' dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the 'fast' AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.


1979 ◽  
Vol 16 (10) ◽  
pp. 1965-1977 ◽  
Author(s):  
W. M. Schwerdtner ◽  
D. Stone ◽  
K. Osadetz ◽  
J. Morgan ◽  
G. M. Stott

Two principal, possibly overlapping, periods of tectonic deformation can be distinguished in the Archean of northwestern Ontario, a period of dominantly vertical-motion tectonics and a period of dominantly horizontal-motion tectonics. Gigantic diapirs of foliated to gneissic tonalite–granodiorite developed during the first period and appear to be responsible for the gross structure of, and the major folds within, the metavolcanic–metasedimentary masses ("greenstone belts"). These diapirs are most likely due to mechanical remobilization of early tabular batholiths which originally intruded the oldest supracrustal rocks presently exposed. Later massive to foliated, dioritic to granitic plutons that vary from concordant, crescentic plutons to partly discordant plutons of various shapes and sizes were emplaced into the diapirs.The second period of tectonic deformation is characterized by large-scale dextral shearing and the development of major transcurrent faults under northwesterly regional compression. The strike-slip motions of this period outlasted the late plutonism, and led to the development of mylonitic zones which cut all Archean granitoid plutons.


2008 ◽  
Vol 21 (4) ◽  
pp. 788-801 ◽  
Author(s):  
Jee-Hoon Jeong ◽  
Baek-Min Kim ◽  
Chang-Hoi Ho ◽  
Yeon-Hee Noh

Abstract The variations in the wintertime precipitation over East Asia and the related large-scale circulation associated with the Madden–Julian oscillation (MJO) are examined. By analyzing the observed daily precipitation for the period 1974–2000, it is found that the MJO significantly modulates the distribution of precipitation over four East Asian countries; the precipitation rate difference between wet and dry periods over East Asia, when the centers of MJO convective activities are located over the Indian Ocean and western Pacific, respectively, reaches 3–4 mm day−1, which corresponds to the climatological winter-mean value. Composite analysis with respect to the MJO suggests that the MJO–precipitation relation is mostly explained by the strong vertical motion anomalies near an entrance region of the East Asia upper-tropospheric jet and moisture supply in the lower troposphere. To elucidate different dynamic origins of the vertical motion generated by the MJO, diagnostic analysis of a generalized omega equation is adopted. It is revealed that about half of the vertical motion anomalies in East Asia are induced by the quasigeostrophic forcings by the MJO, while diabatic heating forcings explain a very small fraction, less than 10% of total anomalies.


2012 ◽  
Vol 69 (12) ◽  
pp. 3633-3651 ◽  
Author(s):  
Qingfang Jiang ◽  
Shouping Wang

Abstract The impact of gravity waves on marine stratocumulus is investigated using a large-eddy simulation model initialized with sounding profiles composited from the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-Rex) aircraft measurements and forced by convergence or divergence that mimics mesoscale diurnal, semidiurnal, and quarter-diurnal waves. These simulations suggest that wave-induced vertical motion can dramatically modify the cloud albedo and morphology through nonlinear cloud–aerosol–precipitation–circulation–turbulence feedback. In general, wave-induced ascent tends to increase the liquid water path (LWP) and the cloud albedo. With a proper aerosol number concentration, the increase in the LWP leads to enhanced precipitation, which triggers or strengthens mesoscale circulations in the boundary layer and accelerates cloud cellularization. Precipitation also tends to create a decoupling structure by weakening the turbulence in the subcloud layer. Wave-induced descent decreases the cloud albedo by dissipating clouds and forcing a transition from overcast to scattered clouds or from closed to open cells. The overall effect of gravity waves on the cloud variability and morphology depends on the cloud property, aerosol concentration, and wave characteristics. In several simulations, a transition from closed to open cells occurs under the influence of gravity waves, implying that some of the pockets of clouds (POCs) observed over open oceans may be related to gravity wave activities.


Sign in / Sign up

Export Citation Format

Share Document