Computational fluid dynamics (CFD) for “typical Dutch” houses failure: experiments and numerical modelling comparison.

Author(s):  
Manuel Andrés Díaz Loaiza ◽  
Benedikt Bratz ◽  
Jeremy Bricker ◽  
PAul Korswagen

<p><strong>Computational fluid dynamics (CFD)  for “typical Dutch” houses failure: experiments and numerical modelling comparison.</strong></p><p>Authors: Andres Diaz Loaiza<sup>1</sup>, Benedikt Bratz<sup>1,2</sup>, Jeremy Bricker<sup>1</sup> and Paul Korswagen<sup>1</sup></p><p>1- Hydraulic Structures and Flood Risk, Technical University of Delft, 1- Technische Universität Braunschweig</p><p> </p><p>Coastal and riverine floods can be a catastrophic natural hazard with importance consequences. Many of the casualties occurring during these events can be attributed to the collapse of residential houses, and it is thus required to gain knowledge about the failure mechanism of these structures. Multiple variables can lead to various flow conditions that will in turn represent different load pressures over the house; among these, the type of the material (used in the construction), the orientation angle in respect to the main flow direction, the shape of the structure, and the urban density (blockage ratio), are relevant. In the present paper, small scale experiments are compared with CFD simulations performed with openFOAM in order to obtain a numerical model than can predict different combinations of load pressures for various flood events.</p><p> </p><p>The present study aims to represent different “typical Dutch” houses near or close to a dam break in which rapid high flow velocities and depths can be presented. The flow conditions and load pressures outputs are compared to physical results in order to validate the numerical model.</p>

2021 ◽  
Author(s):  
Christian Windt ◽  
Nils Goseberg ◽  
Tobias Martin ◽  
Hans Bihs

Abstract Exploiting the offshore wind resources using floating offshore wind systems at sites with deep water depths requires advanced knowledge of the system behaviour, including the hydro-, areo-, and mooring dynamics. To that end, high-fidelity numerical modelling tools, based on Computational Fluid Dynamics, can support the research and development of floating offshore wind systems by providing high-resolution data sets. This paper presents the first steps towards the numerical modelling of tension leg platforms for floating offshore wind applications using the open-source Computational Fluid Dynamics toolbox REEF3D. The numerical model of a taut-moored structure is validated against experimental reference data. Results from wave-only test cases highlight the simplicity and effectiveness of the wave generation method, implemented in REEF3D. For the considered wave-structure interaction cases, deviations between the experimental and numerical data can be observed for the surge and pitch displacements, while the heave displacement and the mooring forces are capture with sufficient accuracy. Overall, the numerical results indicate high potential of REEF3D to be used for the modelling of floating offshore wind systems.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 73 ◽  
Author(s):  
Galih Bangga

The present studies deliver the computational investigations of a 10 MW turbine with a diameter of 205.8 m developed within the framework of the AVATAR (Advanced Aerodynamic Tools for Large Rotors) project. The simulations were carried out using two methods with different fidelity levels, namely the computational fluid dynamics (CFD) and blade element and momentum (BEM) approaches. For this purpose, a new BEM code namely B-GO was developed employing several correction terms and three different polar and spatial interpolation options. Several flow conditions were considered in the simulations, ranging from the design condition to the off-design condition where massive flow separation takes place, challenging the validity of the BEM approach. An excellent agreement is obtained between the BEM computations and the 3D CFD results for all blade regions, even when massive flow separation occurs on the blade inboard area. The results demonstrate that the selection of the polar data can influence the accuracy of the BEM results significantly, where the 3D polar datasets extracted from the CFD simulations are considered the best. The BEM prediction depends on the interpolation order and the blade segment discretization.


2003 ◽  
Author(s):  
Bassam Abu-Hijleh ◽  
Jiyuan Tu ◽  
Aleksander Subic ◽  
Huafeng Li ◽  
Katherine Ilie

The performance of a Rotor-Casing Assembly is influenced more by the internal air leakages than by any other thermo-fluid aspect of its behaviour. The pressure difference driving the air along a leakage path varies periodically and does so in a manner that may not be the same for every leakage path. So the distribution of leakage through the various leakage paths within the machine is important for the improvement of its performance. The total volume of air leakage and the distribution of the leakage among the different paths depend on the rotor-rotor and rotor-casing clearances as well as the geometry of the rotors’ lobes. Computational Fluid Dynamics (CFD) analysis was carried out using the FLUENT. Geometry definition, mesh generation, boundary and flow conditions, and solver parameters have all been investigated as the part of the numerical analysis. This analysis was conducted for static rotors at different positions. The results indicate that the size of the clearances as well as the geometry of the rotors’ lobes can have a significant effect on the total volume of the air leakage as well as the distribution of the leakage among the three main leakage paths. The results can be used to ascertain the proper levels of clearances to be used and the best rotor lobes geometry to be used for the practical reduction of air leakage.


2011 ◽  
Vol 236-238 ◽  
pp. 1619-1622 ◽  
Author(s):  
Bo Fu Wu ◽  
Jin Lai Men ◽  
Jie Chen

In order to enhance the operational safety of tram vehicle and reduce the wear of guide wheels mounted on the vehicle, it is necessary to remove particles such as dusts and silts from tramway surface. The aim of this paper is to evaluate the effectiveness of street vacuum sweeper for sucking up dusts from tramway surface. A numerical model was developed based on dusts removal process. Under different pressure drops across the pickup head of the street vacuum sweeper, the flow field and dusts removal efficiency were analyzed with computational fluid dynamics (CFD) method. The numerical results show that a higher pressure drop can improve the airflow field in the pickup head and results in higher dusts removal efficiency, but higher pressure drop definitely need more energy. Therefore, a balance should be taken into consideration.


2012 ◽  
Vol 532-533 ◽  
pp. 436-440
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo ◽  
Lei He

Ceramic honeycomb is a key component of high temperature air combustion (HiTAC) system and the three-dimensional numerical model is established which is for investing unsteady thermal process in honeycomb regenerator. The start-up period of honeycomb was simulated by means of computational fluid dynamics (CFD) software; the outlet temperature were obtained. The work in this paper provides a theory basis and guide to the exploitation and appliance of HTAC system and the results of the numerical calculation can be used as the foundation of engineering design.


Author(s):  
Alexandre T. P. Alho

In response to the need for better designs in less time and at low costs, computational fluid dynamics (CFD) is becoming an integral part of the vessel’s design process. Recent studies have shown that CFD techniques can be used with relative success for the problem of ship resistance prediction. This paper reports on the simulation of the flow around a typical catamaran hull by means of CFD computations. The numerical model used in the simulations was developed in full scale with the experimental model in order to eliminate any source of scale effects. The paper presents a discussion on grid configuration and an analysis of the performance of the numerical model in describing the characteristics of the in-between hulls flow. The results obtained were validated against experimental data.


Author(s):  
Galih Bangga

The present studies deliver the computational investigations of a 10 MW turbine with a diameter of 205.8 m developed within the framework of the AVATAR (Advanced Aerodynamic Tools for Large Rotors) project. The simulations were carried out using two methods with different fidelity levels, namely the computational fluid dynamics (CFD) and blade element and momentum (BEM) approaches. For this purpose, a new BEM code namely B-GO was developed employing several correction terms and three different polar and spatial interpolation options. Several flow conditions were considered in the simulations, ranging from the design condition to the off-design condition where massive flow separation takes place, challenging the validity of the BEM approach. An excellent agreement is obtained between the BEM computations and the 3D CFD results for all blade regions, even when massive flow separation occurs on the blade inboard area. The results demonstrate that the selection of the polar data can influence the accuracy of the BEM results significantly, where the 3D polar datasets extracted from the CFD simulations are considered the best. The BEM prediction depends on the interpolation order and the blade segment discretization.


2012 ◽  
Vol 170-173 ◽  
pp. 2699-2702
Author(s):  
Zhen Min Cui

The HiTAC technology (High Temperature Air Combustion) is a reliable, industry proven combustion method. A three-dimensional numerical model is established which is for unsteady preheating process in honeycomb regenerator. The preheating period of honeycomb was simulated by means of computational fluid dynamics (CFD) software; the outlet temperature, temperature at lengthways of gas, and temperature at lengthways of honeycomb were obtained.


2012 ◽  
Vol 89 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Zinedine Khatir ◽  
Joe Paton ◽  
Harvey Thompson ◽  
Nik Kapur ◽  
Vassili Toropov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document