scholarly journals Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability

Author(s):  
Yonglong Lu ◽  
Jingjing Yuan ◽  
Xiaotian Lu ◽  
Chao Su ◽  
Yueqing Zhang ◽  
...  

<p>Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed.</p>

2018 ◽  
Author(s):  
Yonglong Lu ◽  
Jingjing Yuan

Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed.


2020 ◽  
Author(s):  
Viviana Piermattei ◽  
Marco Marcelli ◽  
Valentina Cafaro ◽  
Alice Madonia ◽  
Andrea Terribili ◽  
...  

<p>The coastal marine system is characterized by multiple uses and it represents a vulnerable area highly subjected to anthropogenic pressures. Coastal marine ecosystems monitoring therefore requires an integrated multidisciplinary approach. The modeling of marine coastal dynamics and processes and the development of new observational technologies are fundamental in order to increase the available amount of data needed for the application of integrated approaches. New technologies and coastal observation networks are therefore a priority of the Global Ocean Observation System (GOOS) and of the Agenda 2030 strategy to improve the sustainable management of marine ecosystems and to contribute to future climate change scenarios. In this context a big effort is carried out by existing observing programs (ARGO, DPCP, GO-SHIP, OceanSITES, SOOP), which focus on open ocean waters and do not cover coastal areas. To do this, a significant reduction in the costs of platforms and instruments is necessary while maintaining sufficient measurement precision and consequently data quality. To face this issue, an Arduino based technology has been developed starting from the Tree-Talker-Cloud Technology (TT-Cloud board), a data acquisition and transmission system to monitor the health of trees and the impacts of climate change. From this technology, a new low-cost board, TT-Marine, has been developed, characterized by a high modularity allowing to manage the sensors by different types of communication protocols: RS232, UART, i2c, RS485; analog sensors can be managed by 16 and 24 bit AD converters. Depending on the characteristics and opportunities of the site, the system can manage LoRa, WiFi, gprs/gsm or cable data transmission systems. The TT-Marine is designed to be used in different modes: autonomous, ship-like as a profiler, on buoys and other measuring platforms.Here we present several operating modalities, with different missions and instrumental configurations.</p>


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 806
Author(s):  
Anastasia Tsiola ◽  
Grégoire Michoud ◽  
Stilianos Fodelianakis ◽  
Ioannis Karakassis ◽  
Georgios Kotoulas ◽  
...  

Viruses interfere with their host’s metabolism through the expression of auxiliary metabolic genes (AMGs) that, until now, are mostly studied under large physicochemical gradients. Here, we focus on coastal marine ecosystems and we sequence the viral metagenome (virome) of samples with discrete levels of human-driven disturbances. We aim to describe the relevance of viromics with respect to ecological quality status, defined by the classic seawater trophic index (TRIX). Neither viral (family level) nor bacterial (family level, based on 16S rRNA sequencing) community structure correlated with TRIX. AMGs involved in the Calvin and tricarboxylic acid cycles were found at stations with poor ecological quality, supporting viral lysis by modifying the host’s energy supply. AMGs involved in “non-traditional” energy-production pathways (3HP, sulfur oxidation) were found irrespective of ecological quality, highlighting the importance of recognizing the prevalent metabolic paths and their intermediate byproducts. Various AMGs explained the variability between stations with poor vs. good ecological quality. Our study confirms the pivotal role of the virome content in ecosystem functioning, acting as a “pool” of available functions that may be transferred to the hosts. Further, it suggests that AMGs could be used as an ultra-sensitive metric of energy-production pathways with relevance in the vulnerable coastal zone and its ecological quality.


Author(s):  
Jennifer P. Jorve ◽  
Rebecca L. Kordas ◽  
Kathryn M. Anderson ◽  
Jocelyn C. Nelson ◽  
Manon Picard ◽  
...  

2011 ◽  
Vol 62 (9) ◽  
pp. 1148 ◽  
Author(s):  
John D. Koehn ◽  
Alistair J. Hobday ◽  
Morgan S. Pratchett ◽  
Bronwyn M. Gillanders

Anthropogenic climate change is already apparent and will have significant, ongoing impacts on Australian fishes and their habitats. Even with immediate actions to reduce greenhouse gases, there will be sustained environmental changes. Therefore, it is necessary to consider appropriate adaptations to minimise detrimental impacts for both fishes and the human populations that utilise them. Climate change will have a range of direct effects on the physiology, fitness, and survivorship of Australia’s marine, estuarine and freshwater fishes, but also indirect effects via habitat degradation and changes to ecosystems. Effects will differ across populations, species and ecosystems, with some impacts being complex and causing unexpected outcomes. The range of adaptation options and necessary levels of intervention to maintain populations and ecosystem function will largely depend on the vulnerability of species and habitats. Climate change will also have an impact on people who depend on fishes for food or livelihoods; adapting to a new climate regime will mean trade-offs between biological assets and socioeconomic drivers. Models can be used to help predict trends and set priorities; however, they must be based on the best available science and data, and include fisheries, environmental, socioeconomic and political layers to support management actions for adaptation.


2010 ◽  
Vol 6 (3) ◽  
pp. 963-1007 ◽  
Author(s):  
R. Marchant ◽  
J. Finch ◽  
R. Kinyanjui ◽  
V. Muiruri ◽  
C. Mumbi ◽  
...  

Abstract. East African ecosystems are shaped by long-term interaction with changing climate, human population, fire and wildlife. There remains today a strong connection between people and ecosystems, a relationship that is being strained by the rapidly developing and growing East African population, and their associated resource needs. Predicted climatic and atmospheric change will further impact on ecosystems culminating in a host of challenges for their management and sustainable development, further compounded by a backdrop of political, land tenure and economic constraints. Given the many direct and indirect benefits that ecosystems provide to surrounding human populations, understanding how they have changed over time and space deserves a special place on the ecosystem management agenda. Such a perspective can only be derived from a palaeoecology, particularly where there is high resolution, both through time and across space. The East African palaeoecological archive is reviewed, in particular to assess how it can meet this need. Although there remain crucial gaps, the number of palaeoecological archives from East Africa growing rapidly, some employing new and novel techniques to trace past ecosystem response to climate change. When compared to the archaeological record it is possible to disentangle human from climate change impacts, and how the former interacts with major environmental changes such as increased use of fire, changing herbivore densities and increased atmospheric CO2 concentration. With this multi-dimensional perspective of environmental change impacts it is imperative that our understanding of past human-ecosystem interactions are considered to impart effective long term management strategies; such an approach will enhance possibilities for a sustainable future for East African ecosystems and maximise the livelihoods of the populations that rely on them.


2019 ◽  
pp. 77-104 ◽  
Author(s):  
Karla Diana Infante Ramírez ◽  
Ana Minerva Arce Ibarra

The main objective of this study was to analyze local perceptions of climate variability and the different adaptation strategies of four communities in the southern Yucatán Peninsula, using the Social-Ecological System (SES) approach. Four SESs were considered: two in the coastal zone and two in the tropical forest zone. Data were collected using different qualitative methodological tools (interviews, participant observation, and focal groups) and the information collected from each site was triangulated. In all four sites, changes in climate variability were perceived as “less rain and more heat”. In the tropical forest (or Maya) zone, an ancestral indigenous weather forecasting system, known as “Xook k’íin” (or “las cabañuelas”), was recorded and the main activity affected by climate variability was found to be slash-and burn farming or the milpa. In the coastal zone, the main activities affected are fishing and tourism. In all the cases analyzed, local climate change adaptation strategies include undertaking alternative work, and changing the calendar of daily, seasonal and annual labor and seasonal migration. The population of all four SESs displayed concern and uncertainty as regards dealing with these changes and possible changes in the future.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Extensive habitat loss and habitat conversion has occurred across all mediterranean-type climate (MTC) regions, driven by increasing human populations who have converted large tracts of land to production, transport, and residential use (land-use, land-cover change) while simultaneously introducing novel forms of disturbance to natural landscapes. Remaining habitat, often fragmented and in isolated or remote (mountainous) areas, is threatened and degraded by altered fire regimes, introduction of invasive species, nutrient enrichment, and climate change. The types and impacts of these threats vary across MTC regions, but overall these drivers of change show little signs of abatement and many have the potential to interact with MTC region natural systems in complex ways.


Sign in / Sign up

Export Citation Format

Share Document