A new easy-to-use tool for grain size distribution analysis

Author(s):  
Yuming Liu ◽  
Xingxing Liu ◽  
Youbin Sun

<p>Grain size distribution (GSD) data have been widely used in Earth sciences, especially Quaternary Geology, due to its convenience and reliability. However, the usages of GSD are still oversimplified. The geological information contained in GSD is very abundant, but only some simplified proxies (e.g. mean grain size) are widely used. The most important reason is that GSD data are hard to interpret and visualize directly.</p><p>To overcome this, some researchers have developed the methods to unmix the mixed multi-modal GSD to some components to make the interpretation and visualization easier. These methods can be divided into two routes. One is end-member analysis (EMA) which takes a batch of samples for the calculation of the end-members. Another is called single-specimen unmixing (SSU) (Sun et al., 2002) which treats each sample as an individual. The key difference between the two routes is that whether the end-members of a batch of samples are consistent. EMA believes that the end-members between different samples are consistent, the variations of GSD are only caused by the changing of fractions of the end-members. On the contrary, SSU has no assumption on the end-members, i.e. it admits that the end-members may vary between different samples. Some mature tools (Paterson and Heslop, 2015; Dietze and Dietze, 2019) taking the EMA route have appeared, but there is no available public and easy-to-use tool for SSU.</p><p>Here we introduce a free and open-source GUI tool which is called QGrain, it can help researchers to analyze the GSD data easily and bring new insights for the interpretation of GSD. QGrain is based on SSU but applied some algorithms (e.g. data preprocessing and global optimization) to improve its precision and robustness. It supports Lognormal or Weibull as the base distribution and it is easy to add more base distributions. QGrain can handle different types of sediments (e.g. aeolian, fluvial and lacustrine deposits). QGrain can export all detailed data and generate the charts automatically.</p>

2020 ◽  
Author(s):  
Inka Meyer ◽  
Maarten Van Daele ◽  
Niels Thange ◽  
Dirk Verschuren ◽  
Marc De Batist

<p>Terrigenous particles deposited in all kinds of sedimentary records (terrestrial, marine and lacustrine) have proven to yield valuable information for reconstruction of paleo-climate and paleo-environments. Natural sediments typically represent a mixture of deposits of diverse provenance, potentially supplied by different transport processes, expressed in a bi-or poly-modal grain-size distribution. Recently, complex mathematical-statistical end-member models have been developed to disentangle the different sub-populations within one grain-size distribution, which are then assumed to represent a distinct sediment fraction that has a single provenance and/or was transported by the same process to the site of deposition.</p><p>Here we present end-member modeling results of the terrigenous sediment fraction in a 25-kyr sediment sequence from Lake Chala (Kenya/Tanzania), revealing valuable information on climate and environmental change in equatorial East Africa since the Last Glacial Maximum (LGM). Calculated end members could be related to distinct source areas and transport processes, namely to fine aeolian dust, fine-grained soil runoff, coarser aeolian dust from proximal sources and coarse erosive material originating from the crater rim surrounding the lake. Variations in the occurrence of distal versus proximal dust is suggested to be a reliable indicator for changes in East African monsoon circulation. During Northern Hemisphere cold periods, such as the LGM and Younger Dryas (YD), wind systems associated with the Intertropical Convergence Zone (ITCZ) were pushed southward, causing a more intense influence of the NE monsoon at Lake Chala. This resulted in high amounts of fine dust originating from the Horn of Africa region. At the same time, SE monsoon circulation was diminished due to a reduced atmospheric pressure gradient between the Asian/Indian continent and the Indian Ocean. Influx of coarse dust from proximal sources, which are mostly located east of Lake Chala, was impossible due to the weaker SE monsoon circulation. After termination of the YD, rapid reestablishment of the SE monsoon in the Early Holocene is recorded by an abrupt increase in the influx of coarse dust.</p><p>Lake Chala sediments contain one of the few continuous and high-resolution climate records in East Africa spanning the past 25 kyr, providing detailed information on long-term climate variation in an area highly sensitive to hydrological variations. Subdividing the clastic sediment fraction into statistically robust end members produces multiple quantitative and independent proxies to help reconstruct this region’s climate and environmental history.</p>


2011 ◽  
Vol 57 (206) ◽  
pp. 1046-1056 ◽  
Author(s):  
R.W. Obbard ◽  
K.E. Sieg ◽  
I. Baker ◽  
D. Meese ◽  
G.A. Catania

AbstractAn in-depth analysis of seven samples from the Siple Dome (Antarctica) ice core, using optical microscopy and electron backscatter diffraction, illustrates rotational recrystallization or polygonization in the fine-grained region of the core between 700 and 800 m. Between 640 and 700 m, the microstructure is characterized by a bimodal grain-size distribution and a broken girdle fabric with evidence of polygonization. From 727 to 770 m, mean grain size decreases and a single-maximum fabric is found, and, by 790 m, mean grain size has again increased and a multiple-maxima fabric manifests itself. We compare grain-size distribution, c- and a-axis orientation, and misorientation between adjacent grains. We found that misorientations between adjacent grains in the 727–770 m region were predominantly low-angle and typically around a common a-axis, suggesting polygonization. This conclusion is supported by radar evidence of a physical disturbance at 757 m, which may be correlated with higher than usual strain in the 700–800 m range. Below 770 m, larger less regular misorientations and textural evidence show that migration recrystallization is the primary recrystallization mechanism.


Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 301 ◽  
Author(s):  
LA Benny ◽  
NM Kennedy ◽  
JH Kirkman ◽  
RB Stewart

Grain size parameters and clay mineralogical analyses were used to characterize and compare Okareka Ash and post-Okareka tephric loess sampled at eight sites on a transect in Rotorua district, North Island, New Zealand. Grain size distribution analyses show consistently lower mean size and better sorting of the tephric loess compared with the Okareka Ash. The mean grain size of the loess is strongly influenced by the mean grain size of the tephra. Trends in the distribution of biotite and halloysite support the grain size distribution analyses. Taken with field observations, the analytical evidence allows differentiation between Okareka Ash and overlying associated tephric loess.


1995 ◽  
Vol 398 ◽  
Author(s):  
R. A. Ristau ◽  
K. Barmak ◽  
D. W. Hess ◽  
K. R. Coffey ◽  
M. A. Parker ◽  
...  

ABSTRACTOrdering and grain growth have been studied in a 10 nm thick CoPt alloy film of equiatomic composition annealed in the temperature range 550–700°C by quantifying ordered domain size, volume fraction ordered, grain size, and grain size distribution. Ordering occurs by nucleation and growth of Ll0 ordered domains, with a mean size of 3 nm at 550°C and 19 nm at 700°C. The volume percent ordered shows a dramatic increase from <y1% to approximately 28% between the two extremes of annealing temperature. The mean grain size of the as-deposited films is 5 nm and the entire film is face-centered cubic. Upon annealing in the temperature range 550–600°C, the mean grain size reaches a stagnation limit of 27 nm and the grain size distribution is log-normal. Grain growth resumes beyond 600°C and the mean grain size reaches as high as 55 nm at 700°C. The increase in the coercivity of the annealed films follows the increase in the ordered fraction more closely than the increase in grain size. The shape of the M-H loop shows evidence of coupling between the magnetically hard (ordered) and soft (disordered) regions.


1988 ◽  
Vol 52 (9) ◽  
pp. 835-842 ◽  
Author(s):  
Yoshimasa Takayama ◽  
Tatsumi Tozawa ◽  
Hajime Kato ◽  
Norio Furushiro ◽  
Shigenori Hori

Sign in / Sign up

Export Citation Format

Share Document