Estimation of Earth- and satellite-related parameters in radiation pressure modeling from space-borne accelerometry

Author(s):  
Kristin Vielberg ◽  
Jürgen Kusche

<p>Space-borne accelerometers measure the sum of all non-gravitational forces, which interact with the surface of a spacecraft. For low Earth orbit satellites, the atmospheric drag is the largest non-gravitational force. With increasing satellite altitude, the acceleration due to the Earth radiation pressure becomes less relevant, whereas the effect of the Solar radiation pressure becomes prevalent. Accurately modeled non-gravitational forces are necessary for precise orbit determination, satellite gravimetry, or thermospheric density estimation.</p><p>In this study, we apply an inverse procedure with the aim to overcome remaining limitations in state-of-the-art radiation pressure force models. We estimate corrections of limiting parameters such as the satellite’s thermo-optical material properties or systematic errors in Earth radiation data sets. We define different parameterizations and analyse their estimability in terms of rank deficiency and condition numbers. Correlation analyses between estimated parameters will help to detect and overcome multicollinearity. The results are expected to improve the estimation of certain physical radiation pressure model parameters from satellite accelerometer data. Here, the inverse modeling is based on calibrated accelerometer measurements from the satellite mission Gravity Recovery and Climate Experiment (GRACE).</p>

2013 ◽  
Vol 10 (4) ◽  
pp. 1253-1261 ◽  
Author(s):  
Baghdad Science Journal

The effects of solar radiation pressure at several satellite (near Earth orbit satellite, low Earth orbit satellite, medium Earth orbit satellite and high Earth orbit satellite ) have been investigated. Computer simulation of the equation of motion with perturbations using step-by-step integration (Cowell's method) designed by matlab a 7.4 where using Jacobian matrix method to increase the accuracy of result.


2021 ◽  
Author(s):  
Jie Li ◽  
Yongqiang Yuan ◽  
Shi Huang ◽  
Chengbo Liu ◽  
Jiaqing Lou ◽  
...  

<p>With the successful launch of the last Geostationary Earth Orbit (GEO) satellite in June 2020, China has completed the construction of the third generation BeiDou navigation satellites system (BDS-3). BDS-3 global services have been initiated in July 2020 with the constellation of 3 GEO, 3 Inclined Geosynchronous Orbit (IGSO) and 24 Medium Earth Orbit (MEO) satellites. In order to further improve the performance of BDS-3 services, the quality of BDS-3 precise orbit product needs further enhancements.</p><p>       The solar radiation pressure (SRP) is the main non-conservative orbit perturbation for GNSS satellites and is the key to improve BDS-3 precise orbit determination. In this study, we focus on the SRP models for BDS-3 satellites. Firstly, the widely used Extended CODE Orbit Model with five parameters (ECOM-5) is assessed. With one-year observations of 2020 from both iGMAS and MGEX networks, the five parameters of ECOM model (D0, Y0, B0, Bc and Bs) are estimated for each BDS-3 satellite. The D0 estimates show an obvious dependency on the elevation angle of the Sun above the satellite orbital plane (denoted as β). In addition, large variations can be noticed in eclipse seasons, which indicate the dramatic changes of SRP. The Y0 estimates vary from -0.6 nm/s<sup>2</sup> to 0.6 nm/s<sup>2</sup> for MEO, -1.0 to 1.0 nm/s<sup>2</sup> for IGSO and -1.0 to 1.5 nm/s<sup>2</sup> for GEO satellites. The B0 estimates of several satellites exhibit a clear dependency on the β angle. The largest variation of B0 appears at C45 and C46, changing from 1.0 nm/s<sup>2</sup> at 15 deg to 8.3 nm/s<sup>2</sup> at 64 deg, which implies that the solar panels of these two satellites may have an obvious rotation lag. To compensate the deficiencies of BDS-3 SRP modeling, we introduce several additional parameters into ECOM-5 model (e.g. introducing higher harmonic terms). The POD performances can be improved by about 10% and 40% for BDS-3 MEO/IGSO and GEO satellites, respectively.</p><p>       Except for the empirical model, we also study the semi-empirical SRP model such as the a priori box-wing model. Since the geometrical and optical properties from BDS-3 metadata are general and rough, we apply more detailed geometrical and optical coefficients for BDS-3 satellites. The POD performance can be improved by about 10% compared to empirical SRP models. Furthermore, considering Earth radiation pressure will have an impact of about 1.3 cm in radial component for MEO satellites.</p>


2019 ◽  
Vol 11 (24) ◽  
pp. 3024
Author(s):  
Yang Liu ◽  
Yanxiong Liu ◽  
Ziwen Tian ◽  
Xiaolei Dai ◽  
Yun Qing ◽  
...  

The Global Navigation Satellite System (GNSS) ultra-rapid precise orbits are crucial for global and wide-area real-time high-precision applications. The solar radiation pressure (SRP) model is an important factor in precise orbit determination. The real-time orbit determination is generally less accurate than the post-processed one and may amplify the instability and mismodeling of SRP models. Also, the impact of different SRP models on multi-GNSS real-time predicted orbits demands investigations. We analyzed the impact of the ECOM 1 and ECOM 2 models on multi-GNSS ultra-rapid orbit determination in terms of ambiguity resolution performance, real-time predicted orbit overlap precision, and satellite laser ranging (SLR) validation. The multi-GNSS observed orbital arc and predicted orbital arcs of 1, 3, 6, and 24 h are compared. The simulated real-time experiment shows that for GLONASS and Galileo ultra-rapid orbits, compared to ECOM 1, ECOM 2 increased the ambiguity fixing rate to 89.3% and 83.1%, respectively, and improves the predicted orbit accuracy by 9.2% and 27.7%, respectively. For GPS ultra-rapid orbits, ECOM 2 obtains a similar ambiguity fixing rate as ECOM 1 but slightly better orbit overlap precision. For BDS GEO ultra-rapid orbits, ECOM 2 obtains better overlap precision and SLR residuals, while for BDS IGSO and MEO ultra-rapid orbits, ECOM 1 obtains better orbit overlap precision and SLR residuals.


2021 ◽  
Vol 13 (17) ◽  
pp. 3388
Author(s):  
Longjiang Tang ◽  
Jungang Wang ◽  
Huizhong Zhu ◽  
Maorong Ge ◽  
Aigong Xu ◽  
...  

For Global Positioning System (GPS) precise orbit determination (POD), the solar radiation pressure (SRP) is the dominant nongravitational perturbation force. Among the current SRP models, the ECOM and box-wing models are widely used in the International GNSS Service (IGS) community. However, the performance of different models varies over different GPS satellites. In this study, we investigate the performances of different SRP models, including the box-wing and adjustable box-wing as a priori models, and ECOM1 and ECOM2 as parameterization models, in the GPS POD solution from 2017 to 2019. Moreover, we pay special attention to the handling of the shadow factor in the SRP modeling for eclipsing satellites, which is critical to achieve high-precision POD solutions but has not yet been fully investigated. We demonstrate that, as an a priori SRP model, the adjustable box-wing has better performance than the box-wing model by up to 5 mm in the orbit day boundary discontinuity (DBD) statistics, with the largest improvement observed on the BLOCK IIR satellites using the ECOM1 as a parameterization SRP model. The box-wing model shows an insignificant orbit improvement serving as the a priori SRP model. For the eclipsing satellites, the three-dimensional (3D) root mean square (RMS) values of orbit DBD are improved when the shadow factor is applied only in the D direction (pointing toward to Sun) than that in the three directions (D, Y, and B) in the satellite frame. Different SRP models have comparable performance in terms of the Earth rotation parameter (ERP) agreement with the IERS EOP 14C04 product, whereas the magnitude of the length of day (LoD) annual signal is reduced when the shadow factor is applied in the D direction than in the three directions. This study clarifies how the shadow factor should be applied in the GPS POD solution and demonstrates that the a priori adjustable box-wing model combined with ECOM1 is more suitable for high-precision GPS POD solutions, which is useful for the further GNSS data analysis.


GPS Solutions ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Yongqiang Yuan ◽  
Xingxing Li ◽  
Yiting Zhu ◽  
Yun Xiong ◽  
Jiande Huang ◽  
...  

2020 ◽  
Vol 501 (2) ◽  
pp. 1633-1643
Author(s):  
O A Katushkina ◽  
A Galli ◽  
V V Izmodenov ◽  
D B Alexashov

ABSTRACT The Interstellar Boundary Explorer (IBEX) has been measuring interstellar hydrogen fluxes at 1 au since 2009. In this paper, we analysed all available data obtained with the IBEX-Lo instrument at energies 11–41 eV using our numerical kinetic model of the interstellar hydrogen distribution in the heliosphere. We performed a fitting of the data to find independently the model parameters: the ratio of the solar radiation pressure to the solar gravitation (μ0), ionization rate of hydrogen atoms at 1 au (β0), parameters of the secondary interstellar atoms at 70 au from the Sun, which provide the best agreement with the data by minimization of metric χ2. We also analysed temporal variations of the ratio of the fluxes measured in a fixed direction at energy bin 1 and energy bin 2. It is found that in 2009–2011 and 2017–2016 the ratio provided by the model is smaller than in the IBEX-Lo data, while in 2012–2015, oppositely, the model ratio is larger compared to the data. This might be caused by the incorrect separation of the measured fluxes between energy channels in the data, or by some additional physical factors that are omitted in the model. Understanding this issue may be important for the preparation of future Interstellar Mapping and Acceleration Probe mission. At this stage, we relied on the sum of the fluxes measured in energy bins 1 and 2 for comparison to model predictions.


1994 ◽  
Vol 31 (5) ◽  
pp. 830-833 ◽  
Author(s):  
Yvonne Vigue ◽  
Stephen M. Lichten ◽  
Ron J. Muellerschoen ◽  
Geoff Blewitt ◽  
Michael B. Heflin

2020 ◽  
Author(s):  
Xinghan Chen ◽  
Maorong Ge ◽  
Harald Schuh

<p>Currently, with the rapid development of the third generation of BeiDou satellite system (BDS-3), the corresponding solar radiation pressure (SRP) forces should be well and soon modeled in order to enhance the performance of precise orbit determination (POD) and precise clock estimation (PCE) for high-precision applications. In this contribution, the BDS-3 post-processed and ultra-rapid PODs have been realized by fully exploiting data provided by the International GNSS Service (IGS). We firstly test the Center for Orbit Determination in Europe (CODE) SRP model (ECOM1) and ECOM2 models and notice a large disagreement of overlapping orbits at the boundary of two adjacent days within an eclipse period. The reason for this could be that the ECOM2 model is over-parameterized or an extra periodic SRP term should be considered. Furthermore, our numerical analyses confirm that the cosinus terms must be excluded and the fourth- and sixth-order SRP sinus terms are significant in the Sun direction for the SRP model of BDS-3 satellites. Therefore, a new SRP model is developed herein to improve BDS-3 orbits, especially for eclipse season. Using the new SRP model, the large fluctuations of 20 cm can be reduced to below 10 cm for the radial-track component of overlapping orbits over eclipse seasons and SLR residuals are improved by a factor of 2 compared to that of ECOM1 and ECOM2. For the predicted orbits, the improvement due to the new SRP model is also demonstrated and the mean offsets of overlapping orbit differences over the eclipse periods can be reduced from -9.3 cm, -18.9 cm, and 39.9 cm to -5.5 cm, 8.3 cm, and 12.7 cm in the radial, cross, and along directions, respectively.</p>


2020 ◽  
Vol 224 (2) ◽  
pp. 1096-1115
Author(s):  
E Forootan ◽  
S Farzaneh ◽  
M Kosary ◽  
M Schmidt ◽  
M Schumacher

SUMMARY Improving thermospheric neutral density (TND) estimates is important for computing drag forces acting on low-Earth-orbit (LEO) satellites and debris. Empirical thermospheric models are often used to compute TNDs for the precise orbit determination experiments. However, it is known that simulating TNDs are of limited accuracy due to simplification of model structure, coarse sampling of model inputs and dependencies to the calibration period. Here, we apply TND estimates from accelerometer measurements of the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE) missions as observations to improve the NRLMSISE-00 model, which belongs to the mass spectrometer and incoherent scatter family of models. For this, a novel simultaneous calibration and data assimilation (C/DA) technique is implemented that uses the ensemble Kalman filter and the ensemble square-root Kalman filter as merger. The application of C/DA is unique because it modifies both model-derived TNDs, as well as the selected model parameters. The calibrated parameters derived from C/DA are then used to predict TNDs in locations that are not covered by CHAMP and GRACE orbits, and forecasting TNDs of the next day. The C/DA is implemented using daily CHAMP- and/or GRACE-TNDs, for which compared to the original model, we find 27 per cent and 62 per cent reduction of misfit between model and observations in terms of root mean square error and Nash coefficient, respectively. These validations are performed using the observations along the orbital track of the other satellite that is not used in the C/DA during 2003 with various solar activity. Comparisons with another empirical model, that is, Jacchia-Bowman, indicate that the C/DA results improve these quality measurements on an average range of 50 per cent and 60 per cent, respectively.


2018 ◽  
Vol 36 (3) ◽  
pp. 761-779 ◽  
Author(s):  
Kristin Vielberg ◽  
Ehsan Forootan ◽  
Christina Lück ◽  
Anno Löcher ◽  
Jürgen Kusche ◽  
...  

Abstract. Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015.


Sign in / Sign up

Export Citation Format

Share Document