Vortical flow in the plasma sheet: Non-linear growth of flow burst surface wave?

Author(s):  
Ghai Siung Chong ◽  
Alexandre De Spiegeleer ◽  
Maria Hamrin ◽  
Timo Pitkanen ◽  
Sae Aizawa ◽  
...  

<p>In contrast to the simple conventional plasma flow convection governed by the Dungey Cycle, past studies have revealed that the plasma flows in the magnetotail region are more complicated, hosting high-speed bursty and meandering vortical flows. We have utilized magnetic field and plasma data from the Cluster mission to investigate a high speed earthward propagating flow burst with a peak velocity of ~530 km/s in the magnetotail plasma sheet (X<sub>GSM</sub> ~ -17R<sub>E</sub>) on 20 September 2002. In the vicinity of this flow burst, a vortical flow, whose plasma vectors are first directed tailward then earthward, is also observed. The plasma data shows that the plasma population in the vortical flow is likely to originate from the associated flow burst. In addition, the boundaries of both structures are also found to be tangential discontinuities, clearly surrounded by the ambient slow moving plasma sheet. Inside the vortical flow, there exists a region where plasma originating from the flow burst and ambient plasma sheet are mixed. The local segment of inbound boundary crossing of the vortical flow is shown to have a thickness that is non-uniform. Coupled with the flow evolution in the vortical flow, these characteristics are consistent to a boundary crossing of a vortical flow. The magnetic field on the flow burst is quasi-perpendicular to the large velocity shear (~460 km/s) across the flow burst boundary. These results suggest that the formation of vortical flow can arise from the development and subsequent growth of flow burst boundary wave as a result of Kelvin-Helmholtz instability. In summary, this article presents a detailed observational study of a vortical flow and the formation of which would serve as the first direct observational consequence of an excited and growing flow burst boundary wave. Continuous scattering of the detached vortices may play an important role in the braking mechanism of earthward propagating flow bursts. </p>

2003 ◽  
Vol 21 (7) ◽  
pp. 1497-1507 ◽  
Author(s):  
K. Shiokawa ◽  
W. Baumjohann ◽  
G. Paschmann

Abstract. We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5) at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet)


2017 ◽  
Vol 35 (5) ◽  
pp. 1131-1142 ◽  
Author(s):  
Heqiucen Xu ◽  
Kazuo Shiokawa ◽  
Dennis Frühauff

Abstract. We statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet at 6–12 RE (Earth radii; 1 RE = 6371 km), because they are important for non-magnetohydrodynamics (non-MHD) effects in the magnetotail and are considered to be necessary for current disruption in the inside-out substorm model. We used magnetic field data from 2013 and 2014 obtained by the Time History of Events and Macroscale Interactions during Substorms E (THEMIS-E) satellite (sampling rate: 4 Hz). A total of 1283 severe magnetic fluctuation events were identified that satisfied the criteria σB∕B > 0. 5, where σB and B are the standard deviation and the average value of magnetic field intensity during the time interval of the local proton gyroperiod, respectively. We found that the occurrence rates of severe fluctuation events are 0.00118, 0.00899, and 0.0238 % at 6–8, 8–10, and 10–12 RE, respectively, and most events last for no more than 15 s. From these occurrence rates, we estimated the possible scale sizes of current disruption by severe magnetic fluctuations as 3.83 RE3 by assuming that four substorms with 5 min intervals of current disruption occur every day. The fluctuation events occurred most frequently at the ZGSM (Z distance in the geocentric solar magnetospheric coordinate system) close to the model neutral sheet within 0.2 RE. Most events occur in association with sudden decreases in the auroral electrojet lower (AL) index and magnetic field dipolarization, indicating that they are related to substorms. Sixty-two percent of magnetic fluctuation events were accompanied by ion flow with velocity V > 100 km s−1, indicating that the violation of ion gyromotion tends to occur during high-speed flow in the near-Earth plasma sheet. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We discuss how both the inside-out and outside-in substorm models can explain this increase in flow speeds before magnetic fluctuation events.


2013 ◽  
Vol 31 (12) ◽  
pp. 2179-2192 ◽  
Author(s):  
C. X. Chen

Abstract. The characteristic cross-tail width of bursty bulk flows (BBFs) in earth's plasma sheet was investigated at two stages of its life, one at its onset, the other when it is fully developed. Equilibrium domains with gradient of magnetic field are constructed. Interchange instability analysis of such domains yields the most unstable mode with the half wave length comparable with the observed cross-tail width of a flow burst and the inverse of growth rate comparable with its duration. The thickness of the plasma sheet for the most unstable mode is also comparable to the width of BBFs in the north–south direction. We found that viscosity, the dimension of the unstable domain, the thickness of the plasma sheet and gradient of the magnetic field together determine the most unstable mode. The ion Larmor radius plays an important role in viscosity as half effective mean free path. For a fully developed flow, however, velocity-caused pressure difference between the leading and trailing sides of a flow burst also plays a role. The equatorial cross section of flow is reshaped and its cross-tail width is changed as well. Representing the surrounding medium with empirical magnetic field and plasma models, the force balance of the fast flow is analyzed. The cross-section area of flow burst is estimated to be one to several square earth radii, and the cross-tail width of fast flow is estimated to be 1 to 3 earth radii, which is consistent with observations of BBFs.


Author(s):  
Yingzi Chen ◽  
Zhiyuan Yang ◽  
Wenxiong Peng ◽  
Huaiqing Zhang

Magnetic pulse welding is a high-speed welding technology, which is suitable for welding light metal materials. In the magnetic pulse welding system, the field shaper can increase the service life of the coil and contribute to concentrating the magnetic field in the welding area. Therefore, optimizing the structure of the field shaper can effectively improve the efficiency of the system. This paper analyzed the influence of cross-sectional shape and inner angle of the field shaper on the ability of concentrating magnetic field via COMSOL software. The structural strength of various field shapers was also analyzed in ABAQUS. Simulation results show that the inner edge of the field shaper directly affects the deformation and welding effect of the tube. So, a new shape of field shaper was proposed and the experimental results prove that the new field shaper has better performance than the conventional field shaper.


Sign in / Sign up

Export Citation Format

Share Document