High viscosity of polymer solutions supports life in soil hotspots

Author(s):  
Andrea Carminati ◽  
Pascal Benard ◽  
Mohsen Zarebanadkouki ◽  
Mutez A Ahmed

<p>Plant roots and bacteria alter the soil properties by releasing a polymeric blend of substances (e.g. mucilage and extracellular polymeric substances EPS). Despite extensive knowledge of their ecological importance, the physical mechanisms by which these polymers alter the spatial configuration of the liquid phase and the related hydraulic and biogeochemical properties remain unclear.</p><p>Here we show that upon drying in porous media polymer solutions form one-dimensional filaments and two-dimensional interconnected structures spanning across multiple pores. Unlike water, primarily shaped by surface tension, these structures remain connected upon drying thanks to their high viscosity. The integrity of one-dimensional structures is explained by the high viscosity and low surface tension of the polymer solutions (elegantly characterized by the Ohnesorge number). The formation of two-dimensional structures requires consideration of the interaction of the polymer solution with the solid surfaces and external drivers, such as the drying rate.</p><p>The implications of these physical processes for life in soils are manifold. After their deposition they enhance water retention by acting as a new solid matrix delaying the air entry, they maintain the connectivity of the liquid phase, thus enhancing the unsaturated hydraulic conductivity, diffusion and enzyme activity. Upon rewetting, the formation of extensive two-dimensional structures corresponds to a sudden increase in soil water repellency, which reduces the rewetting kinetics and maintains gas diffusion preventing sudden water saturation. In summary, these structures buffer fluctuations in soil water contents, protecting roots and soil microorganisms against severe drying and sudden rewetting in soil hotspots.</p>

2020 ◽  
Vol 15 (1) ◽  
pp. 19-23
Author(s):  
Qiang Zeng ◽  
Lingjiang Zhang

During the construction of highway, the exhaust emissions of equipment and vehicles will affect the ecological environment in a certain range around the road, especially in environmental sensitive areas such as national nature reserves, which need to be quantitatively studied. In this work, a novel two-dimensional net-like hierarchical WO3 nanostructure was synthesized by a one-step hydrothermal route. It was amazing that this novel two-dimensional WO3 show ultra-sensitivity towards NO2, primarily attributed to abundant gas diffusion channels and large gas-sensitive reaction surface area furnished by one-dimensional net-like WO3 nanowires. Benefiting from their novel characteristic, the two dimensional net-like WO3 based sensor has been applied in NO2 monitoring of the natural protected area.


Nano Letters ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 5449-5454 ◽  
Author(s):  
Jianfeng Shen ◽  
Yongmin He ◽  
Jingjie Wu ◽  
Caitian Gao ◽  
Kunttal Keyshar ◽  
...  

2020 ◽  
Author(s):  
Andrea Carminati ◽  
Pascal Benard ◽  
Judith Schepers ◽  
Margherita Crosta ◽  
Mohsen Zarebanadkouki

<p>Bacteria alter the physical properties of soil hotspots by secreting extracellular polymeric substances EPS. Despite the biogeochemical importance of these alterations is well accepted, the physical mechanisms by which EPS shapes the properties of the soil solution and its interactions with the soil matrix are not well understood.</p><p>Here we show that upon drying in porous media EPS forms one-dimensional filaments and two-dimensional interconnected structures spanning across multiple pores. Unlike water, primarily shaped by surface tension, EPS remains connected upon drying thanks to its high extensional viscosity. The integrity of one-dimensional structures is explained by the interplay of viscosity and surface tension forces (characterized by the Ohnesorge number), while the formation of two-dimensional structures requires consideration of the interaction of EPS with the solid surfaces and external drivers, such as the drying rate. During drying, the viscosity of EPS increases and, at a critical point, when the friction between polymers and solid surfaces overcomes the water adsorption of the polymers, the concentration of the polymer solution at the liquid-gas interface increases asymptotically and the polymers can no longer follow the retreating gas-water interface. At this critical point the polymers do not move any longer and are deposited as two-dimensional surfaces, such as hollow cylinders or interconnected surfaces. EPS viscosity, specific soil surface and drying rates are the key parameters determining the transition from one- to two-dimensional structures.</p><p>The high viscosity of EPS maintains the connectivity of the liquid phase during drying in soil hotspots, such as bacterial colonies, the rhizosphere and biological soil crusts.</p>


2021 ◽  
Author(s):  
Lukas Riedel ◽  
Hannes Helmut Bauser ◽  
Robert Maiwald ◽  
Santiago Ospina De Los Ríos

<div> <div>Soil water flow is a key hydrological process supporting several ecosystem services. The non-linear soil hydraulic material properties have a profound influence on the flow dynamics and cannot be measured directly. They can be estimated with data assimilation based on measurements of the soil hydraulic state. As soils feature a multi-scale architecture, these measurements typically cannot resolve the soil heterogeneity on the relevant spatial and estimating it becomes difficult. In a previous study, we estimated a one-dimensional effective representation of a synthetic, two-dimensional, heterogeneous domain based on a vertical measurement profile using an ensemble Kalman filter. The estimated one-dimensional model represented the dynamics of the soil water movement sufficiently well, but it remained unclear if these results can be transferred to associated physical processes.</div> <br><div>Soil water flow also transports solutes between surface and groundwater. The accurate description of solute fluxes and concentrations is crucial for predicting groundwater quality and contamination. In this study, we use the aforementioned estimated, one-dimensional representation of the domain to simulate and forecast passive solute transport within the soil water flow. We examine its predictive capabilities by comparing these results with results obtained from the two-dimensional, heterogeneous synthetic truth from which artificial measurements are extracted.</div> </div>


1979 ◽  
Vol 92 (4) ◽  
pp. 691-715 ◽  
Author(s):  
Mark J. Ablowitz ◽  
Harvey Segur

We consider the evolution of packets of water waves that travel predominantly in one direction, but in which the wave amplitudes are modulated slowly in both horizontal directions. Two separate models are discussed, depending on whether or not the waves are long in comparison with the fluid depth. These models are two-dimensional generalizations of the Korteweg-de Vries equation (for long waves) and the cubic nonlinear Schrödinger equation (for short waves). In either case, we find that the two-dimensional evolution of the wave packets depends fundamentally on the dimensionless surface tension and fluid depth. In particular, for the long waves, one-dimensional (KdV) solitons become unstable with respect to even longer transverse perturbations when the surface-tension parameter becomes large enough, i.e. in very thin sheets of water. Two-dimensional long waves (‘lumps’) that decay algebraically in all horizontal directions and interact like solitons exist only when the one-dimensional solitons are found to be unstable.The most dramatic consequence of surface tension and depth, however, occurs for capillary-type waves in sufficiently deep water. Here a packet of waves that are everywhere small (but not infinitesimal) and modulated in both horizontal dimensions can ‘focus’ in a finite time, producing a region in which the wave amplitudes are finite. This nonlinear instability should be stronger and more apparent than the linear instabilities examined to date; it should be readily observable.Another feature of the evolution of short wave packets in two dimensions is that all one-dimensional solitons are unstable with respect to long transverse perturbations. Finally, we identify some exact similarity solutions to the evolution equations.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1999 ◽  
Vol 2 (3) ◽  
pp. 251-262
Author(s):  
P. Gestoso ◽  
A. J. Muller ◽  
A. E. Saez

1982 ◽  
Vol 14 (1-2) ◽  
pp. 241-261 ◽  
Author(s):  
P A Krenkel ◽  
R H French

The state-of-the-art of surface water impoundment modeling is examined from the viewpoints of both hydrodynamics and water quality. In the area of hydrodynamics current one dimensional integral energy and two dimensional models are discussed. In the area of water quality, the formulations used for various parameters are presented with a range of values for the associated rate coefficients.


Sign in / Sign up

Export Citation Format

Share Document