Variation of glacial dynamics in Peru: from valley glaciers to mountain glaciers in a context of climate change

Author(s):  
Edwin Loarte ◽  
Katy Medina ◽  
Yadira Curo ◽  
Hairo Leon ◽  
Fiorella Quiñonez ◽  
...  

<p>One of the effects of climate change on tropical glaciers is the accelerated reduction of their glacial tongue, reflected in a morphometric variation. Many glaciers that had pronounced tongues and that extended through a valley (Valley glacier) now have reduced their fronts located in the upper parts of the valleys (Mountain glacier).</p><p>This has been studied with glaciers of Peru located in 18 mountain ranges located from S 8°20'56" to 15°53'26" and W 77°56'10" to 69°05'14", which are an important solid water reserve that directly supplies the population of 11 departments.</p><p>The study focused on the "digit 1" (primary classification) of the Global Land Ice Measurement from Space (GLIMS), which classifies the glaciers mainly in: valley glaciers and mountain glaciers. The processing of raster and vector data through the use of geographic information system and remote sensing tools allowed to analyze the changes and variations affecting glaciers with respect to their morphometry. For this, a comparison was made between glacier coverage in 2016 (using images Sentinel 2), produced by INAIGEM, and the baseline of the glacier coverage of 1955 and 1970 (using aerial photography), from the first inventory of glaciers in Peru, produced by Hidrandina S.A.</p><p>The results show a significant morphometric variation of 83.7%, where valley glaciers (from Hidrandina inventory) became mainly mountain glaciers. Nowadays only four mountain ranges have mountain glaciers inside whereas in the past it were nine. When we analyze the results for watersheds, the most morphometric changes were 89% in the Atlantic watershed, followed by 57% in the Pacific watershed; in the Amazon watershed there was not any registration of any mountain glaciers since the first inventory in Peru. The surface changes do not show specific any predominant aspect, and average slopes are between 25° and 50°.</p><p>The glacial tongues that are considered valley glacier area located in ablation zones, where the mass balance is negative and there is more susceptibility to reducing their mass and, consequently, to variations in shape and size in a short period. This change has been accentuated in recent decades.</p>

2020 ◽  
Author(s):  
Pengcheng Yan ◽  
Guolin Feng ◽  
Wei Hou

Abstract. Climate change could be expressed as a climate system transiting from the initial state to a new state in a short time. By considering the short period as a continued process, which is called transition process, more details of climate change would be described according to analysis the time sequence self. We had proposed a method to quantify the transition process of the Pacific Decadal Oscillation (PDO) time sequence and global sea surface temperature system. And the quantitative relationships among the parameters characterizing the abrupt changes is revealed during the transition process. In this paper, we develop this method to predict the end moment (state) if the transition process has not been completed. Application of prediction method to the PDO sequences indicates that the PDO index increased from a stable stage before 2011 and gradually evolved to a transition process, and it was likely to end in 2015, which is consistent with observations.


2020 ◽  
Author(s):  
Katy Medina ◽  
Edwin Loarte ◽  
Edwin Badillo ◽  
Hairo Leon ◽  
Francisco Castillo ◽  
...  

<p>Climate change generates significant impacts on high mountain regions, especially considering the sensitivity of tropical glaciers. However, information about rock glaciers are very scarce and there is very limited research in this field in Peru. Rock glacier concentrate mainly in the southern part of Peru where 95% of rock glaciers are located. Here we present for the first time an overview of rock glacier occurrence and characteristics in Peru.</p><p>The Cordilleras Huanzo and Chila are located in the mountain ranges in the southern region of Peru, Huanzo in the administrative region of Apurimac, Arequipa, Cusco and Ayacucho, while Chila in Arequipa. Both cordilleras extend from S 15°39'41.36" to 14°03'17.54" and W 73°24'12.55" to 71°27'113.20". For this study, remote sensing tools and geographic information system were applied, using images from Google Earth-Pro and SASPlanet, corrected DEM ALOS Palsar (12.5m), MERIT DEM (90m) and WorldClim data (1970-2000) 1 km<sup>2</sup>.</p><p>The results indicate that in the cordillera Huanzo there are 317 rock glaciers with a total area of 26.97 km<sup>2</sup> and in the cordillera Chila there are 289 rock glaciers with 17.96 km<sup>2</sup>. Concerning their activity or dynamic there are 295 intact (active and inactive) rock glaciers and 311 relict or fossil rock glaciers.</p><p>The results further indicate that rock glaciers are located in thermal ranges between -1.53°C and 3.97°C. The relict or fossil types are located in the thermal range between -1.34°C and 3.97°C, while intact types between -1.53°C and 2.56°C. The rock glaciers of the cordillera Huanzo are located at an average altitude of 4497 to 5221 m.a.s.l., while in the cordillera Chila at 4470 to 5454 m.a.s.l. The aspect is predominantly S to SW.</p><p>Rock glaciers contain ice which may represent a potential water reserve in arid regions in Southern of Peru. The greatest distribution of these resources is found in the Camana and Ocoña basins of the Pacific watershed with 38.1 km<sup>2</sup> of rock glacier area. In the Atlantic watershed, 6.8 km<sup>2</sup> of rock glaciers are located in the Alto Apurimac and Ocoña basins.</p>


2018 ◽  
Vol 64 (244) ◽  
pp. 247-258 ◽  
Author(s):  
EVIATAR BACH ◽  
VALENTINA RADIĆ ◽  
CHRISTIAN SCHOOF

ABSTRACTSimple models of glacier volume evolution are important in understanding features of glacier response to climate change, due to the scarcity of data adequate for running more complex models on a global scale. Two quantities of interest in a glacier's response to climate changes are its response time and its volume sensitivity to changes in the equilibrium line altitude (ELA). We derive a simplified, computationally inexpensive model of glacier volume evolution based on a block model with volume–area–length scaling. After analyzing its steady-state properties, we apply the model to each mountain glacier worldwide and estimate regionally differentiated response times and sensitivities to ELA changes. We use a statistical method from the family of global sensitivity analysis methods to determine the glacier quantities, geometric and climatic, that most influence the model output. The response time is dominated by the climatic setting reflected in the mass-balance gradient in the ablation zone, followed by the surface slope, while volume sensitivity is mainly affected by glacier size, followed by the surface slope.


2021 ◽  
Author(s):  
Kyoko Ikeda ◽  
Roy Rasmussen ◽  
Changhai Liu ◽  
Andrew Newman ◽  
Fei Chen ◽  
...  

AbstractThis study examines current and future western U.S. snowfall and snowpack through current and future climate simulations with a 4-km horizontal grid spacing cloud permitting regional climate model over the entire CONtinental U.S. for a 13-year period between 2001 and 2013. At this horizontal resolution, the spatiotemporal distribution of the orographic snowfall and snowpack is well captured partly due to the ability of the model to realistically simulate mesoscale and microphysical features such as orographically induced updrafts driving clouds and precipitation. The historical simulation well captures the observed snowfall and snowpack amounts and pattern in the western U.S. The future climate simulation uses the Pseudo-Global Warming approach, taking the climate change signal from CMIP5 multi-model ensemble-mean difference between 2070–2099 and 1976–2005. The results show that the thermodynamic impacts of climate change in the western U.S. can be characterized considering mountain ranges in two distinct geographic regions: the mountain ranges close to the Pacific Ocean (coastal ranges) and those in the inter-mountain west. Climate change out to 2100 significantly impacts all aspects of the water cycle, with pronounced climate change response in the coastal ranges. A notable result is that the snowpack in the Pacific Northwest is predicted to decrease by ~ 70% by 2100. Trends of this magnitude have already been observed in the historical data and in previous studies. The current Pseudo Global Warming future climate simulation and previous global climate simulations all suggest that these trends will continue to the point that most snowpack will be gone by 2100 in the Pacific Northwest for the most aggressive RCP8.5 climate scenario, even if annual precipitation increases by 10%. Future work will focus on extending the current convective permitting results to a full climate change simulation allowing for dynamical changes in the flow.


2020 ◽  
Author(s):  
Leif Anderson ◽  
Dirk Scherler

<p>Glacial moraines represent one of the most spatially diverse climate archives on earth. Moraine dating and numerical modeling are used to effectively reconstruct past climate from mountain ranges at the global scale. But because moraines are often located downvalley from steep mountain headwalls, it is possible that debris-covered glaciers emplaced many moraines preserved in the landscape today.</p><p>Before we can understand the effect of debris cover on the moraine recored we need to understand how debris modulates glacier response to climate change. To help address this need, we developed a numerical model that links feedbacks between mountain glaciers, climate change, hillslope erosion, and landscape evolution. Our model uses parameters meant to represent glaciers in the Khumbu region of Nepal, though the model physics are relevant for mountain glaciers elsewhere.</p><p>We compare simulated debris-covered and debris-free glaciers and their length evolution. We explore the effect of climate-dependent hillslope erosion. We also allow temperature change to control frost cracking and permafrost in the headwall above simulated glaciers. Including these effects holds special implications for glacial evolution during deglaciation and the long-term evolution of mountain landscapes.</p><p>Because debris cover suppresses melt, debris-covered glaciers can advance independent of climate change. When debris cover is present during cold periods, moraine emplacement can lag debris-free glacier moraine emplacement by hundreds of years. We develop a suite of tools to help determine whether individual moraines were formed by debris-covered glaciers. Our analyses also point to how we might interpret moraine ages and estimate past climate states from debris-perturbed settings.</p>


2021 ◽  
pp. 194016122110180
Author(s):  
Meghan M. Shea ◽  
James Painter ◽  
Shannon Osaka

While studies have investigated UN Framework Convention on Climate Change (UNFCCC) meetings as drivers of climate change reporting as well as the geopolitical role of Pacific Islands in these international forums, little research examines the intersection: how media coverage of Pacific Islands and climate change (PICC) may be influenced by, or may influence, UNFCCC meetings. We analyze two decades of reporting on PICC in American, British, and Australian newspapers—looking at both volume and content of coverage—and expand the quantitative results with semi-structured interviews with journalists and Pacific stakeholders. Issue attention on PICC increases and the content changes significantly in the periods around UNFCCC meetings, with shifts from language about vulnerability outside of UNFCCC periods to language about agency and solutions. We explore the implications of these differences in coverage for both agenda setting and the amplification of emotional appeals in UNFCCC contexts.


2010 ◽  
Vol 11 ◽  
pp. 13-19 ◽  
Author(s):  
CJ Salvadeo ◽  
D Lluch-Belda ◽  
A Gómez-Gallardo ◽  
J Urbán-Ramírez ◽  
CD MacLeod

Sign in / Sign up

Export Citation Format

Share Document