scholarly journals Snowfall and snowpack in the Western U.S. as captured by convection permitting climate simulations: current climate and pseudo global warming future climate

2021 ◽  
Author(s):  
Kyoko Ikeda ◽  
Roy Rasmussen ◽  
Changhai Liu ◽  
Andrew Newman ◽  
Fei Chen ◽  
...  

AbstractThis study examines current and future western U.S. snowfall and snowpack through current and future climate simulations with a 4-km horizontal grid spacing cloud permitting regional climate model over the entire CONtinental U.S. for a 13-year period between 2001 and 2013. At this horizontal resolution, the spatiotemporal distribution of the orographic snowfall and snowpack is well captured partly due to the ability of the model to realistically simulate mesoscale and microphysical features such as orographically induced updrafts driving clouds and precipitation. The historical simulation well captures the observed snowfall and snowpack amounts and pattern in the western U.S. The future climate simulation uses the Pseudo-Global Warming approach, taking the climate change signal from CMIP5 multi-model ensemble-mean difference between 2070–2099 and 1976–2005. The results show that the thermodynamic impacts of climate change in the western U.S. can be characterized considering mountain ranges in two distinct geographic regions: the mountain ranges close to the Pacific Ocean (coastal ranges) and those in the inter-mountain west. Climate change out to 2100 significantly impacts all aspects of the water cycle, with pronounced climate change response in the coastal ranges. A notable result is that the snowpack in the Pacific Northwest is predicted to decrease by ~ 70% by 2100. Trends of this magnitude have already been observed in the historical data and in previous studies. The current Pseudo Global Warming future climate simulation and previous global climate simulations all suggest that these trends will continue to the point that most snowpack will be gone by 2100 in the Pacific Northwest for the most aggressive RCP8.5 climate scenario, even if annual precipitation increases by 10%. Future work will focus on extending the current convective permitting results to a full climate change simulation allowing for dynamical changes in the flow.

2012 ◽  
Vol 12 (12) ◽  
pp. 5367-5390 ◽  
Author(s):  
J. Kelly ◽  
P. A. Makar ◽  
D. A. Plummer

Abstract. Ten year simulations of North American current and future air-quality were carried out using a regional air-quality model driven by a regional climate model, in turn driven by a general circulation model. Three separate summer scenarios were performed: a scenario representing the years 1997 to 2006, and two SRES A2 climate scenarios for the years 2041 to 2050. The first future climate scenario makes use of 2002 anthropogenic precursor emissions, and the second applied emissions scaling factors derived from the IPCC Representative Concentration Pathway 6 (RCP 6) scenario to estimate emissions for 2050 from existing 2020 projections. Ten-year averages of ozone and PM2.5 at North American monitoring network stations were used to evaluate the model's current chemical climatology. The model was found to have a similar performance for ozone as when driven by an operational weather forecast model. The PM2.5 predictions had larger negative biases, likely resulting from the absence of rainwater evaporation, and from sub-regional negative biases in the surface temperature fields, in the version of the climate model used here. The differences between the two future climate simulations and the current climate simulation were used to predict the changes to air-quality that might be expected in a future warmer climate, if anthropogenic precursor emissions remain constant at their current levels, versus if the RCP 6 emissions controls were adopted. Metrics of concentration, human health, and ecosystem damage were compared for the simulations. The scenario with future climate and current anthropogenic emissions resulted in worse air-quality than for current conditions – that is, the effect of climate-change alone, all other factors being similar, would be a worsening of air-quality. These effects are spatially inhomogeneous, with the magnitude and sign of the changes varying with region. The scenario with future climate and RCP 6 emissions for 2050 resulted in an improved air-quality, with decreases in key pollutant concentrations, in acute human mortality associated with air-pollution, and in sulphur and ozone deposition to the ecosystem. The positive outcomes of the RCP 6 emissions reductions were found to be of greater magnitude than the negative outcomes of climate change alone. The RCP 6 scenario however resulted in an increase in the deposition of nitrogen, as a result of increased ammonia emissions expected in that scenario, compared to current ammonia emissions levels. The results of the study raise the possibility that simultaneous reductions of greenhouse gases and air pollution precursors may further reduce air pollution levels, with the added benefits of an immediate reduction in the impacts of air pollution on human and ecosystem health. Further scenarios to investigate this possibility are therefore recommended.


2018 ◽  
Vol 21 ◽  
pp. 69-84 ◽  
Author(s):  
Henriette I. Jager ◽  
Anthony W. King ◽  
Sudershan Gangrade ◽  
Angelina Haines ◽  
Christopher DeRolph ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ji-Woo Lee ◽  
Suryun Ham ◽  
Song-You Hong ◽  
Kei Yoshimura ◽  
Minsu Joh

This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM), namely, the Global/Regional Integrated Model System (GRIMs), Regional Model Program (RMP). The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070) simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.


Author(s):  
Christian Philipp Lackner ◽  
Bart Geerts ◽  
Yonggang Wang

AbstractA high-resolution (4 km) regional climate simulation conducted with the Weather Research and Forecast (WRF) model is used to investigate potential impacts of global warming on skiing conditions in the interior western United States (IWUS). Recent past and near-future climate conditions are compared. The past climate period is from November 1981 to October 2011. The future climate applies to a 30-year period centered on 2050. A pseudo global warming approach is used, with the driver re-analysis dataset perturbed by the CMIP5 ensemble mean model guidance. Using the 30-year retrospective simulation, a vertical adjustment technique is used to determine meteorological parameters in the complex terrain where ski areas are located. For snow water equivalent (SWE), Snow Telemetry sites close to ski areas are used to validate the technique and apply a correction to SWE in ski areas. The vulnerability to climate change is assessed for 71 ski areas in the IWUS considering SWE, artificially produced snow, temperature, and rain. 20 of the ski areas will tend to have fewer than 100 days per season with sufficient natural and artificial snow for skiing. These ski areas are located at either low elevations or low latitudes making these areas the most vulnerable to climate change. Throughout the snow season, natural SWE decreases significantly at the low elevations and low latitudes. At higher elevations changes in SWE are predicted to not be significant in the mid-season. In mid-February, SWE decreases by 11.8% at the top elevations of ski areas while it decreases by 25.8% at the base elevations.


2016 ◽  
Vol 29 (16) ◽  
pp. 5999-6018 ◽  
Author(s):  
Liping Zhang ◽  
Thomas L. Delworth

Abstract The impact of climate change on the Pacific decadal oscillation (PDO) is studied using a fully coupled climate model. The model results show that the PDO has a similar spatial pattern in altered climates, but its amplitude and time scale of variability change in response to global warming or cooling. In response to global warming the PDO amplitude is significantly reduced, with a maximum decrease over the Kuroshio–Oyashio Extension (KOE) region. This reduction appears to be associated with a weakened meridional temperature gradient in the KOE region. In addition, reduced variability of North Pacific wind stress, partially due to reduced air–sea feedback, also helps to weaken the PDO amplitude by reducing the meridional displacements of the subtropical and subpolar gyre boundaries. In contrast, the PDO amplitude increases in response to global cooling. In the control simulations the model PDO has an approximately bidecadal peak. In a warmer climate the PDO time scale becomes shorter, changing from ~20 to ~12 yr. In a colder climate the time scale of the PDO increases to ~34 yr. Physically, global warming (cooling) enhances (weakens) ocean stratification. The increased (decreased) ocean stratification acts to increase (reduce) the phase speed of internal Rossby waves, thereby altering the time scale of the simulated PDO.


2021 ◽  
Author(s):  
Sjoukje Y. Philip ◽  
Sarah F. Kew ◽  
Geert Jan van Oldenborgh ◽  
Faron S. Anslow ◽  
Sonia I. Seneviratne ◽  
...  

Abstract. Towards the end of June 2021, temperature records were broken by several degrees Celsius in several cities in the Pacific northwest areas of the U.S. and Canada, leading to spikes in sudden deaths, and sharp increases in hospital visits for heat-related illnesses and emergency calls. Here we present a multi-model, multi-method attribution analysis to investigate to what extent human-induced climate change has influenced the probability and intensity of extreme heatwaves in this region. Based on observations and modeling, the occurrence of a heatwave with maximum daily temperatures (TXx) as observed in the area 45° N–52° N, 119° W–123° W, was found to be virtually impossible without human-caused climate change. The observed temperatures were so extreme that they lie far outside the range of historically observed temperatures. This makes it hard to quantify with confidence how rare the event was. In the most realistic statistical analysis, which uses the assumption that the heatwave was a very low probability event that was not caused by new nonlinearities, the event is estimated to be about a 1 in 1000 year event in today’s climate. With this assumption and combining the results from the analysis of climate models and weather observations, an event, defined as daily maximum temperatures (TXx) in the heatwave region, as rare as 1 in a 1000 years would have been at least 150 times rarer without human-induced climate change. Also, this heatwave was about 2 °C hotter than a 1 in 1000-year heatwave that at the beginning of the industrial revolution would have been (when global mean temperatures were 1.2 °C cooler than today). Looking into the future, in a world with 2 °C of global warming (0.8 °C warmer than today), a 1000-year event would be another degree hotter. It would occur roughly every 5 to 10 years in such global warming conditions. Our results provide a strong warning: our rapidly warming climate is bringing us into uncharted territory with significant consequences for health, well-being, and livelihoods. Adaptation and mitigation are urgently needed to prepare societies for a very different future.


2012 ◽  
Vol 12 (2) ◽  
pp. 3875-3940 ◽  
Author(s):  
J. Kelly ◽  
P. A. Makar ◽  
D. A. Plummer

Abstract. Ten year simulations of North American current and future air-quality were carried out using a regional air-quality model driven by a regional climate model, in turn driven by a general circulation model. Three separate summer scenarios were performed: a scenario representing the years 1997 to 2006, and two SRES A2 climate scenarios for the years 2041 to 2050. The first future climate scenario makes use of 2002 anthropogenic precursor emissions, and the second applied emissions scaling factors derived from the IPCC Representative Concentration Pathway 6 (RCP 6) scenario to estimate emissions for 2050 from existing 2020 projections. Ten-year averages of ozone and PM2.5 at North American monitoring network stations were used to evaluate the model's current chemical climatology. The model was found to have a similar performance for ozone as when driven by an operational weather forecast model. The PM2.5 predictions had larger negative biases, likely resulting from the absence of rainwater evaporation, and from sub-regional negative biases in the surface temperature fields, in the version of the climate model used here. The differences between the two future climate simulations and the current climate simulation were used to predict the changes to air-quality that might be expected in a future warmer climate, if anthropogenic precursor emissions remain constant at their current levels, versus if the RCP 6 emissions controls were adopted. Metrics of concentration, human health, and ecosystem damage were compared for the simulations. The scenario with future climate and current anthropogenic emissions resulted in worse air-quality than for current conditions – that is, the effect of climate-change alone, all other factors being similar, would be a worsening of air-quality. These effects are spatially inhomogeneous, with the magnitude and sign of the changes varying with region. The scenario with future climate and RCP 6 emissions for 2050 resulted in an improved air-quality, with decreases in key pollutant concentrations, in acute human mortality associated with air-pollution, and in sulphur and ozone deposition to the ecosystem. The positive outcomes of the RCP 6 emissions reductions were found to be of greater magnitude than the negative outcomes of climate change alone. The RCP 6 scenario however resulted in an increase in the deposition of nitrogen, as a result of increased ammonia emissions expected in that scenario, compared to current ammonia emissions levels. The results of the study raise the possibility that simultaneous reductions of greenhouse gases and air pollution precursors may further reduce air pollution levels, with the added benefits of an immediate reduction in the impacts of air pollution on human and ecosystem health. Further scenarios to investigate this possibility are therefore recommended.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Masayoshi Ishii ◽  
Nobuhito Mori

Abstract A large-ensemble climate simulation database, which is known as the database for policy decision-making for future climate changes (d4PDF), was designed for climate change risk assessments. Since the completion of the first set of climate simulations in 2015, the database has been growing continuously. It contains the results of ensemble simulations conducted over a total of thousands years respectively for past and future climates using high-resolution global (60 km horizontal mesh) and regional (20 km mesh) atmospheric models. Several sets of future climate simulations are available, in which global mean surface air temperatures are forced to be higher by 4 K, 2 K, and 1.5 K relative to preindustrial levels. Nonwarming past climate simulations are incorporated in d4PDF along with the past climate simulations. The total data volume is approximately 2 petabytes. The atmospheric models satisfactorily simulate the past climate in terms of climatology, natural variations, and extreme events such as heavy precipitation and tropical cyclones. In addition, data users can obtain statistically significant changes in mean states or weather and climate extremes of interest between the past and future climates via a simple arithmetic computation without any statistical assumptions. The database is helpful in understanding future changes in climate states and in attributing past climate events to global warming. Impact assessment studies for climate changes have concurrently been performed in various research areas such as natural hazard, hydrology, civil engineering, agriculture, health, and insurance. The database has now become essential for promoting climate and risk assessment studies and for devising climate adaptation policies. Moreover, it has helped in establishing an interdisciplinary research community on global warming across Japan.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Julián A. Velasco ◽  
Francisco Estrada ◽  
Oscar Calderón-Bustamante ◽  
Didier Swingedouw ◽  
Carolina Ureta ◽  
...  

AbstractImpacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy. Amphibians are indicators of ecosystems’ health and particularly sensitive to novel climate conditions. Using state-of-the-art climate model simulations, we present a global assessment of the effects of unabated global warming and a collapse of the Atlantic meridional overturning circulation (AMOC) on the distribution of 2509 amphibian species across six biogeographical realms and extinction risk categories. Global warming impacts are severe and strongly enhanced by additional and substantial AMOC weakening, showing tipping point behavior for many amphibian species. Further declines in climatically suitable areas are projected across multiple clades, and biogeographical regions. Species loss in regional assemblages is extensive across regions, with Neotropical, Nearctic and Palearctic regions being most affected. Results underline the need to expand existing knowledge about the consequences of climate catastrophes on human and natural systems to properly assess the risks of unabated warming and the benefits of active mitigation strategies.


Sign in / Sign up

Export Citation Format

Share Document