Investigating the factors affecting Monsoon precipitation under climate change

Author(s):  
Harry Mutton ◽  
Mat Collins ◽  
Hugo Lambert ◽  
Rob Chadwick

<p>The Monsoons produce some of the largest levels of uncertainty in projected precipitation change across the globe, and addressing this uncertainty is a key issue that must be faced in order to allow correct adaptation policy to be put in place.</p><p> </p><p>A set of CMIP6 GCM experiments, that allow the full effect of CO<sub>2</sub> forcing to be decomposed into individual components, highlight the leading factors that produce changes in monsoon precipitation. The results reveal a high spatial variability in these factors, with changes in the Indian Monsoon dominated by the effect of sea surface temperatures and the direct radiative effect of increased CO<sub>2</sub>, and changes in the South American Monsoon governed by the plant physiological effect and the direct radiative effect of increased CO<sub>2</sub>. The processes behind these precipitation changes are also investigated by looking at variations in atmospheric circulation and surface temperature. Results of the patterned sea surface temperature experiment demonstrate a slow-down of the Indian Monsoon circulation possibly driven by an anomalously warm Indian Ocean.</p><p> </p><p>This analysis has been performed for all land monsoon regions, decomposing the full CO<sub>2</sub> forcing into; uniform and patterned sea surface temperature change, the plant physiological effect, the direct radiative effect and the impact of sea-ice melt. These results can help identify emergent constraints, as well as indicate which aspects of climate models need to be improved in order to reduce model uncertainty.</p>

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2015 ◽  
Vol 11 (1) ◽  
pp. 45-61 ◽  
Author(s):  
P. A. Araya-Melo ◽  
M. Crucifix ◽  
N. Bounceur

Abstract. The sensitivity of the Indian monsoon to the full spectrum of climatic conditions experienced during the Pleistocene is estimated using the climate model HadCM3. The methodology follows a global sensitivity analysis based on the emulator approach of Oakley and O'Hagan (2004) implemented following a three-step strategy: (1) development of an experiment plan, designed to efficiently sample a five-dimensional input space spanning Pleistocene astronomical configurations (three parameters), CO2 concentration and a Northern Hemisphere glaciation index; (2) development, calibration and validation of an emulator of HadCM3 in order to estimate the response of the Indian monsoon over the full input space spanned by the experiment design; and (3) estimation and interpreting of sensitivity diagnostics, including sensitivity measures, in order to synthesise the relative importance of input factors on monsoon dynamics, estimate the phase of the monsoon intensity response with respect to that of insolation, and detect potential non-linear phenomena. By focusing on surface temperature, precipitation, mixed-layer depth and sea-surface temperature over the monsoon region during the summer season (June-July-August-September), we show that precession controls the response of four variables: continental temperature in phase with June to July insolation, high glaciation favouring a late-phase response, sea-surface temperature in phase with May insolation, continental precipitation in phase with July insolation, and mixed-layer depth in antiphase with the latter. CO2 variations control temperature variance with an amplitude similar to that of precession. The effect of glaciation is dominated by the albedo forcing, and its effect on precipitation competes with that of precession. Obliquity is a secondary effect, negligible on most variables except sea-surface temperature. It is also shown that orography forcing reduces the glacial cooling, and even has a positive effect on precipitation. As regards the general methodology, it is shown that the emulator provides a powerful approach, not only to express model sensitivity but also to estimate internal variability and detect anomalous simulations.


2018 ◽  
Vol 53 (1-2) ◽  
pp. 173-192 ◽  
Author(s):  
Wei-Ching Hsu ◽  
Christina M. Patricola ◽  
Ping Chang

Author(s):  
R. Shunmugapandi ◽  
S. Gedam ◽  
A. B. Inamdar

Abstract. Ocean surface phytoplankton responses to the tropical cyclone (TC)/storms have been extensively studied using satellite observations by aggregating the data into a weekly or bi-weekly composite. The reason behind is the significant limitations found in the satellite-based observation is the missing of valid data due to cloud cover, especially at the time of cyclone track passage. The data loss during the cyclone is found to be a significant barrier to efficiently investigate the response of chl-a and SST during cyclone track passage. Therefore it is necessary to rectify the above limitation to effectively study the impact of TC on the chlorophyll-a concentration (chl-a) and the sea surface temperature (SST) to achieve a complete understanding of their response to the TC prevailed in the Arabian Sea. Intending to resolve the limitation mentioned above, this study aims to reconstruct the MODIS-Aqua chl-a, and SST data using Data Interpolating Empirical Orthogonal Function (DINEOF) for all the 31 cyclonic events occurred in the Arabian Sea during 2003-2018 (16 years). Reconstructed satellite retrieved data covering all the cyclonic events were further used to investigate the chl-a and SST dynamics during TC. From the results, the exciting fact has been identified that only two TC over the eastern-AS were able to induce phytoplankton bloom. On investigating this scenario using sea surface temperature, it was disclosed that the availability of nutrients decides the suitable condition for the phytoplankton to proliferate in the surface ocean. Relevant to the precedent criterion, the results witnessed that the 2 TC (Phyan and Ockhi cyclone) prevailed in the eastern AS invoked a suitable condition for phytoplankton bloom. Other TC found to be less provocative either due to less intensity, origination region or the unsuitable condition. Thereby, gap-free reconstructed daily satellite-derived data efficiently investigates the response of bio-geophysical parameters during cyclonic events. Moreover, this study sensitised that though several TC strikes the AS, only two could impact phytoplankton productivity and SST found to highly consistent with the chl-a variability during the cyclone passage.


Sign in / Sign up

Export Citation Format

Share Document