Sensitivity of resolved gravity wave momentum fluxes on different background separation methods in a high resolution simulation.

Author(s):  
Zuzana Procházková ◽  
Petr Šácha ◽  
Aleš Kuchař ◽  
Petr Pišoft ◽  
Christopher Kruse

<p>Internal gravity waves (GWs) and their interaction with the atmospheric circulation present a complex problem for global climate models (GCMs) due to a variety of spatial and temporal scales involved. GWs and their effects in GCMs are parameterized by employing various simplifications and restrictions<br>(propagation, spectrum). Also, our incomplete knowledge of the GW properties in the real atmosphere complicates the situation. Global (satellite) observations of the GW activity are spatiotemporally sparse, making the quantification of the GW interaction with the circulation hardly possible. Recently, atmospheric models capable of resolving most of the GW spectrum have been emerging due to the increasing performance of computing systems. It is increasingly acknowledged that a combination of various types of observations with dedicated high-resolution, GW resolving, simulations has a potential to provide the most precise information about GWs. This combination will allow us to better understand the uncertainty of satellite observations of GW activity, which in turn will be used to develop new GW parameterizations or in development of GW resolving models.<br>In this study, we will analyze sensitivity of GW momentum flux and its divergence on background separation (and other GW detection) methods and approximations (Boussinesq, anelastic) used in the formulas. We analyze data from high-resolution model simulations produced for an observing system simulation experiment of the ISSI team "New Quantitative Constraints on Orographic GW Stress and Drag" (to be introduced in an invited presentation by Ch. Kruse).</p>

2011 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Antonella Sanna ◽  
Edoardo Bucchignani ◽  
Myriam Montesarchio

2017 ◽  
Author(s):  
Imme Benedict ◽  
Chiel C. van Heerwaarden ◽  
Albrecht H. Weerts ◽  
Wilco Hazeleger

Abstract. The hydrological cycle of river basins can be simulated by combining global climate models (GCMs) and global hydrological models (GHMs). The spatial resolution of these models is restricted by computational resources and therefore limits the processes and level of detail that can be resolved. To further improve simulations of precipitation and river-runoff on a global scale, we assess and compare the benefits of an increased resolution for a GCM and a GHM. We focus on the Rhine and Mississippi basin. Increasing the resolution of a GCM (1.125° to 0.25°) results in more realistic large-scale circulation patterns over the Rhine and an improved precipitation budget. These improvements with increased resolution are not found for the Mississippi basin, most likely because precipitation is strongly dependent on the representation of still unresolved convective processes. Increasing the resolution of vegetation and orography in the high resolution GHM (from 0.5° to 0.05°) shows no significant differences in discharge for both basins, because the hydrological processes depend highly on other parameter values that are not readily available at high resolution. Therefore, increasing the resolution of the GCM provides the most straightforward route to better results. This route works best for basins driven by large-scale precipitation, such as the Rhine basin. For basins driven by convective processes, such as the Mississippi basin, improvements are expected with even higher resolution convection permitting models.


2018 ◽  
Vol 22 (7) ◽  
pp. 3933-3950 ◽  
Author(s):  
Reinhard Schiemann ◽  
Pier Luigi Vidale ◽  
Len C. Shaffrey ◽  
Stephanie J. Johnson ◽  
Malcolm J. Roberts ◽  
...  

Abstract. Limited spatial resolution is one of the factors that may hamper applications of global climate models (GCMs), in particular over Europe with its complex coastline and orography. In this study, the representation of European mean and extreme precipitation is evaluated in simulations with an atmospheric GCM (AGCM) at different resolutions between about 135 and 25 km grid spacing in the mid-latitudes. The continent-wide root-mean-square error in mean precipitation in the 25 km model is about 25  % smaller than in the 135 km model in winter. Clear improvements are also seen in autumn and spring, whereas the model's sensitivity to resolution is very small in summer. Extreme precipitation is evaluated by estimating generalised extreme value distributions (GEVs) of daily precipitation aggregated over river basins whose surface area is greater than 50 000 km2. GEV location and scale parameters are measures of the typical magnitude and of the interannual variability of extremes, respectively. Median model biases in both these parameters are around 10 % in summer and around 20 % in the other seasons. For some river basins, however, these biases can be much larger and take values between 50 % and 100 %. Extreme precipitation is better simulated in the 25 km model, especially during autumn when the median GEV parameter biases are more than halved, and in the North European Plains, from the Loire in the west to the Vistula in the east. A sensitivity experiment is conducted showing that these resolution sensitivities in both mean and extreme precipitation are in many areas primarily due to the increase in resolution of the model orography. The findings of this study illustrate the improved capability of a global high-resolution model in simulating European mean and extreme precipitation.


2020 ◽  
Author(s):  
Claudia Stephan

<p>Idealized simulations have shown decades ago that shallow clouds generate internal gravity waves, which under certain atmospheric background conditions become trapped inside the troposphere and influence the development of clouds. These feedbacks, which occur at horizontal scales of up to several tens of km are neither resolved, nor parameterized in traditional global climate models (GCMs), while the newest generation of GCMs is starting to resolve them. The interactions between the convective boundary layer and trapped waves have almost exclusively been studied in highly idealized frameworks and it remains unclear to what degree this coupling affects the organization of clouds and convection in the real atmosphere. Here, the coupling between clouds and trapped waves is examined in storm-resolving simulations that span the entirety of the tropical Atlantic and are initialized and forced by meteorological analyses. The coupling between clouds and trapped waves is sufficiently strong to be detected in these simulations of full complexity.  Stronger upper-tropospheric westerly winds are associated with a stronger cloud-wave coupling. In the simulations this results in a highly-organized scattered cloud field with cloud spacings of about 19 km, matching the dominant trapped wavelength. Based on the large-scale atmospheric state wave theory can reliably predict the regions and times where cloud-wave feedbacks become relevant to convective organization. Theory, the simulations and satellite imagery imply a seasonal cycle in the trapping of gravity waves. </p>


2020 ◽  
Author(s):  
Julia Lockwood ◽  
Erika Palin ◽  
Galina Guentchev ◽  
Malcolm Roberts

<p>PRIMAVERA is a European Union Horizon2020 project about creating a new generation of advanced and well-evaluated high-resolution global climate models, for the benefit of governments, business and society in general. The project has been engaging with several sectors, including finance, transport, and energy, to understand the extent to which any improved process understanding arising from high-resolution global climate modelling can – in turn – help with using climate model output to address user needs.</p><p>In this talk we will outline our work for the finance and (re)insurance industries.  Following consultation with members of the industry, we are using PRIMAVERA climate models to generate a European windstorm event set for use in catastrophe modelling and risk analysis.  The event set is generated from five different climate models, each run at a selection of resolutions ranging from 18-140km, covering the period 1950-2050, giving approximately 1700 years of climate model data in total.  High-resolution climate models tend to have reduced biases in storm track position (which is too zonal in low-resolution climate models) and windstorm intensity.  We will compare the properties of the windstorm footprints and associated risk across the different models and resolutions, to assess whether the high-resolution models lead to improved estimation of European windstorm risk.  We will also compare windstorm risk in present and future climates, to see if a consistent picture emerges between models.  Finally we will address the question of whether the event sets from each PRIMAVERA model can be combined to form a multi-model event set ensemble covering thousands of years of windstorm data.</p>


2020 ◽  
Author(s):  
Arjen P. Stroeven ◽  
Ramona A.A. Schneider ◽  
Robin Blomdin ◽  
Natacha Gribenski ◽  
Marc W. Caffee ◽  
...  

<p>Paleoglaciological data is a crucial source of information towards insightful paleoclimate reconstructions by providing vital boundary conditions for regional and global climate models. In this context, the Third Pole Environment is considered a key region because it is highly sensitive to global climate change and its many glaciers constitute a diminishing but critical supply of freshwater to downstream communities in SE Asia. Despite its importance, extents of past glaciation on the Tibetan Plateau remain poorly documented or controversial largely because of the lack of well define glacial chronostratigraphies and reconstructions of former glacier extent. This study contributes to a better documentation of the extent and improved resolution of the timing of past glaciations on the southeastern margin of the Tibetan Plateau. We deploy a high-resolution TanDEM-X Digital Elevation Model (12 m resolution) to produce maps of glacial and proglacial fluvial landforms in unprecedented detail. Geomorphological and sedimentological field observations complement the mapping while cosmogenic nuclide exposure dating of quartz samples from boulders on end moraines detail the timing of local glacier expansion. Additionally, samples for optically stimulated luminescence dating were taken from extensive and distinct terraces located in pull-apart basins downstream of the end moraines to determine their formation time. We compare this new dataset with new and published electron spin resonance ages from terraces. Temporal coherence between the different chronometers strengthens the geochronological record while divergence highlights limitations in the applicability of the chronometers to glacial research or in our conceptual understanding of landscape changes in tectonic regions. Results highlight our current understanding of paleoglaciation, landscape development, and paleoclimate on the SE Tibetan Plateau.</p>


2012 ◽  
Vol 69 (7) ◽  
pp. 2272-2283 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held ◽  
Shian-Jiann Lin

Abstract High-resolution global climate models (GCMs) have been increasingly utilized for simulations of the global number and distribution of tropical cyclones (TCs), and how they might change with changing climate. In contrast, there is a lack of published studies on the sensitivity of TC genesis to parameterized processes in these GCMs. The uncertainties in these formulations might be an important source of uncertainty in the future projections of TC statistics. This study investigates the sensitivity of the global number of TCs in present-day simulations using the Geophysical Fluid Dynamics Laboratory High Resolution Atmospheric Model (GFDL HIRAM) to alterations in physical parameterizations. Two parameters are identified to be important in TC genesis frequency in this model: the horizontal cumulus mixing rate, which controls the entrainment into convective cores within the convection parameterization, and the strength of the damping of the divergent component of the horizontal flow. The simulated global number of TCs exhibits nonintuitive response to incremental changes of both parameters. As the cumulus mixing rate increases, the model produces nonmonotonic response in global TC frequency with an initial sharp increase and then a decrease. However, storm mean intensity rises monotonically with the mixing rate. As the strength of the divergence damping increases, the model produces a continuous increase of global number of TCs and hurricanes with little change in storm mean intensity. Mechanisms for explaining these nonintuitive responses are discussed.


2020 ◽  
Vol 13 (11) ◽  
pp. 5485-5506
Author(s):  
Marie-Estelle Demory ◽  
Ségolène Berthou ◽  
Jesús Fernández ◽  
Silje L. Sørland ◽  
Roman Brogli ◽  
...  

Abstract. In this study, we evaluate a set of high-resolution (25–50 km horizontal grid spacing) global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP), developed as part of the EU-funded PRIMAVERA (Process-based climate simulation: Advances in high resolution modelling and European climate risk assessment) project, and from the EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment) regional climate models (RCMs) (12–50 km horizontal grid spacing) over a European domain. It is the first time that an assessment of regional climate information using ensembles of both GCMs and RCMs at similar horizontal resolutions has been possible. The focus of the evaluation is on the distribution of daily precipitation at a 50 km scale under current climate conditions. Both the GCM and RCM ensembles are evaluated against high-quality gridded observations in terms of spatial resolution and station density. We show that both ensembles outperform GCMs from the 5th Coupled Model Intercomparison Project (CMIP5), which cannot capture the regional-scale precipitation distribution properly because of their coarse resolutions. PRIMAVERA GCMs generally simulate precipitation distributions within the range of EURO-CORDEX RCMs. Both ensembles perform better in summer and autumn in most European regions but tend to overestimate precipitation in winter and spring. PRIMAVERA shows improvements in the latter by reducing moderate-precipitation rate biases over central and western Europe. The spatial distribution of mean precipitation is also improved in PRIMAVERA. Finally, heavy precipitation simulated by PRIMAVERA agrees better with observations in most regions and seasons, while CORDEX overestimates precipitation extremes. However, uncertainty exists in the observations due to a potential undercatch error, especially during heavy-precipitation events. The analyses also confirm previous findings that, although the spatial representation of precipitation is improved, the effect of increasing resolution from 50 to 12 km horizontal grid spacing in EURO-CORDEX daily precipitation distributions is, in comparison, small in most regions and seasons outside mountainous regions and coastal regions. Our results show that both high-resolution GCMs and CORDEX RCMs provide adequate information to end users at a 50 km scale.


2020 ◽  
Vol 59 (2) ◽  
pp. 207-235 ◽  
Author(s):  
Lei Zhang ◽  
YinLong Xu ◽  
ChunChun Meng ◽  
XinHua Li ◽  
Huan Liu ◽  
...  

AbstractIn aiming for better access to climate change information and for providing climate service, it is important to obtain reliable high-resolution temperature simulations. Systematic comparisons are still deficient between statistical and dynamic downscaling techniques because of their inherent unavoidable uncertainties. In this paper, 20 global climate models (GCMs) and one regional climate model [Providing Regional Climates to Impact Studies (PRECIS)] are employed to evaluate their capabilities in reproducing average trends of mean temperature (Tm), maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), and extreme events represented by frost days (FD) and heat-wave days (HD) across China. It is shown generally that bias of temperatures from GCMs relative to observations is over ±1°C across more than one-half of mainland China. PRECIS demonstrates better representation of temperatures (except for HD) relative to GCMs. There is relatively better performance in Huanghuai, Jianghuai, Jianghan, south Yangzi River, and South China, whereas estimation is not as good in Xinjiang, the eastern part of northwest China, and the Tibetan Plateau. Bias-correction spatial disaggregation is used to downscale GCMs outputs, and bias correction is applied for PRECIS outputs, which demonstrate better improvement to a bias within ±0.2°C for Tm, Tmax, Tmin, and DTR and ±2 days for FD and HD. Furthermore, such improvement is also verified by the evidence of increased spatial correlation coefficient and symmetrical uncertainty, decreased root-mean-square error, and lower standard deviation for reproductions. It is seen from comprehensive ranking metrics that different downscaled models show the most improvement across different climatic regions, implying that optional ensembles of models should be adopted to provide sufficient high-quality climate information.


Sign in / Sign up

Export Citation Format

Share Document