Can biomass supply meet the demands of BECCS?

Author(s):  
Michael Jones

<p>In order to reach the reduced carbon emission targets proposed by the Paris agreement one of the widely proposed decarbonizing strategies, referred to as negative emissions technologies (NETs), is the production and combustion of second-generation bioenergy crops in conjunction with carbon capture and storage (BECCS). The international research on NETs has grown rapidly and publications have ranged in scope from reviewing potential and assessing feasibility to technological maturity and discussions on deployment opportunities. However, concerns have been increasingly raised that ungrounded optimism in NETs potential could result in delayed reductions in gross CO<sub>2</sub> emission, with consequent high-risk of overshooting global temperature targets. Negative emissions as a consequence of BECCS are achieved when the CO<sub>2</sub> absorbed from the atmosphere during the growth cycle of biomass is released in combustion and energy production and then captured and stored indefinitely. The simplistic vision of BECCS is that one ton of CO<sub>2</sub> captured in the growth of biomass would equate to one ton of CO<sub>2</sub> sequestered geologically- which we can regard as a carbon efficiency of 1. However, biomass crops are not carbon neutral as GHG emissions are associated with the cultivation of biomass.  Furthermore, throughout the BECCS value chain carbon ‘leaks’. Some life cycle analyses of the entire value chain for a BECCS crop to final carbon storage in the ground have shown leakage of CO<sub>2</sub> to be greater than the CO<sub>2</sub> captured at the point of combustion and thus it has low carbon efficiency. The deployment of BECCS is ultimately reliant on the availability of sufficient, sustainably sourced, biomass for an active CCS industry operating at scale and a favourable policy and commercial environment to incentivise these investments. It has been suggested that the theoretical global demand for biomass for BECCS could range from 50 EJ/yr up to more than 300 EJ/yr, although the technical and economic potential will be significantly less and will be dependent on uncertain social preferences and economic forces. The two most important factors determining this supply are land availability and land productivity. These factors are in turn determined by competing uses of land and a myriad of environmental and economic considerations. It is suggested that removing 3.3 GtC/year with BECCS could annually require between 360 and 2400 Mha of marginal land. The upper bounds correspond to 3x the world’s harvested land for cereal production. The conclusion is that estimates of biomass availability for the future depends on the evolution of a multitude of social, political, and economic factors including land tenure and regulation, trade, and technology. Consequently, the assumptions, in future climate scenarios, that high rates of NETs can be achieved across many countries and land types is not yet demonstrated.</p><p> </p>

2021 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Neville Tawona

The list of countries that have committed to net-zero emissions by 2050 is growing. All Australian states and territories have committed to this target. It has prompted businesses in both the public and private sectors to begin developing and investing in strategies that contribute to a low carbon future. The global climate policy instruments, particularly the Paris Agreement, provides the legal framework for countries to plan and deliver on their commitments to reduce their greenhouse gas (GHG) emissions. While the traditional energy sources (coal, gas, oil, solar and wind) will continue to play an important role in Australia’s future, the transition to a low carbon economy will require a diverse mix of other transformational low emission technologies. Energy-from-waste technologies like direct combustion, gasification and anaerobic digestion will play a major role in the waste management sector to support state and national resource recovery goals including the transition to a circular economy. Renewable gas and hydrogen production, as well as carbon capture and storage will complement current efforts to decarbonise the industrial, transport, domestic and energy sectors. This paper presents an overview of the policies relating to climate change and emissions reduction strategies in Australia, as well as a review of low emission technologies and investment opportunities for the water and waste sectors.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Vol 61 (2) ◽  
pp. 466
Author(s):  
Prakash Sharma ◽  
Benjamin Gallagher ◽  
Jonathan Sultoon

Australia is in a bind. It is at the heart of the pivot to clean energy: it contains some of the world’s best solar irradiance and vast potential for large-scale carbon capture and storage; it showed the world the path forward with its stationary storage flexibility at the much vaunted Hornsdale power reserve facility; and it moved quickly to capitalise on low-carbon hydrogen production. Yet it remains one of the largest sources for carbon-intensive energy exports in the world. The extractive industries are still delivering thermal coal for power generation and metallurgical coal for carbon-intensive steel making in Asian markets. Even liquefied natural gas’s green credentials are being questioned. Are these two pathways compatible? The treasury and economy certainly benefit. But there is a huge opportunity to redress the source of those funds and jobs, while fulfilling the aspirations to reach net zero emissions by 2050. In our estimates, the low-carbon hydrogen economy could grow to become so substantial that 15% of all energy may be ultimately ‘carried’ by hydrogen by 2050. It is certainly needed to keep the world from breaching 2°C. Can Australia master the hydrogen trade? It is believed that it has a very good chance. Blessed with first-mover investment advantage, and tremendous solar and wind resourcing, Australia is already on a pathway to become a producer of green hydrogen below US$2/kg by 2030. How might it then construct a supply chain to compete in the international market with established trading partners and end users ready to renew old acquaintances? Its route is assessed to mastery of the hydrogen trade, analyse critical competitors for end use and compare costs with other exporters of hydrogen.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.


Environments ◽  
2018 ◽  
Vol 5 (10) ◽  
pp. 108 ◽  
Author(s):  
Tryfonas Pieri ◽  
Alexandros Nikitas ◽  
Arturo Castillo-Castillo ◽  
Athanasios Angelis-Dimakis

Carbon capture and utilization (CCU) is recognized by the European Union, along with carbon, capture and storage (CCS), as one of the main tools towards global warming mitigation. It has, thus, been extensively studied by various researchers around the world. The majority of the papers published so far focus on the individual stages of a CCU value chain (carbon capture, separation, purification, transportation, and transformation/utilization). However, a holistic approach, taking into account the matching and the interaction between these stages, is also necessary in order to optimize and develop technically and economically feasible CCU value chains. The objective of this contribution is to present the most important studies that are related to the individual stages of CCU and to perform a critical review of the major existing methods, algorithms and tools that focus on the simulation or optimization of CCU value chains. The key research gaps will be identified and examined in order to lay the foundation for the development of a methodology towards the holistic assessment of CCU value chains.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3599 ◽  
Author(s):  
Martinez-Fernandez ◽  
deLlano-Paz ◽  
Calvo-Silvosa ◽  
Soares

Carbon mitigation is a major aim of the power-generation regulation. Renewable energy sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio. We include technological and environmental restrictions in the model. The optimization is carried out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards, we minimize its emission factor and risk. By combining these two results, we are able to draw an area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It is necessary to include all available renewable technologies in order to reduce the cost and the risk of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a low-carbon approach.


2013 ◽  
Vol 807-809 ◽  
pp. 783-789 ◽  
Author(s):  
Di Zhou ◽  
Cui Ping Liao ◽  
Peng Chun Li ◽  
Ying Huang

CCS (Carbon Capture and Storage) is the only technology available to achieve a deep cut in CO2emissions from large-scale fossil fuel usage. Although Guangdong Province has less heavy industries and higher reliance on energy import compared with many other provinces in China, CCS is still essential for the low-carbon development in the province. This is because fossil fuel energy is now and will be in the foreseeable future the major energy in Guangdong. CCS may have other benefits such as helping energy security and bring new business opportunities. The feasibility of CCS development in Guangdong is ensured by the existence of sufficient CO2storage capacity in offshore sedimentary basins in the northern South China Sea. A safe CO2storage is achievable as long as the selection of storage sites and the storage operations are in restrict quality control. The increased cost and energy penalty associated with CCS could be reduced through technical R&D, the utilization of captured CO2, and the utilization of infrastructure of offshore depleted oil fields. Fossil fuel energy plus CCS should be regarded as a new type of clean energy and deserves similar incentive policies that have been applied to other clean energies such as renewables and nuclear.


Sign in / Sign up

Export Citation Format

Share Document