River incision, climate and vertical motions since the LGM in south-western Alps (France)

Author(s):  
Carole Petit ◽  
Rolland Yann ◽  
Braucher Régis ◽  
Bourlès Didier ◽  
Cardinal Thibaut ◽  
...  

<p>In South-Western European Alps, although scarce, evidences of recent vertical motions suggest a slow (~0.1 mm/yr) uplift of the northern Ligurian margin, which increases towards to East from the Var river mouth to the gulf of Genova. Whether this uplift is due to active compressional tectonics, to isostatic rebound or to a combination of both is still unclear. In addition, because of the large topographic gradient, rivers have carved deep gorges in the bedrock of the SW subalpine chains. However, neither the role of vertical motion nor that of climatic changes since the LGM on river incision rates is well established.</p><p>Over the last 10 years, a dataset of <sup>10</sup>Be and <sup>36</sup>Cl based cosmic ray exposure (CRE) ages obtained on river and glacier polished surfaces in the SW French Alps has been gathered. This dataset covers several areas located in the Argentera crystalline massif, in the Nice and Castellane subalpine chains, and in the Provence domain.</p><p>We will present a compilation of these data in an attempt to answer the following questions: - what is the influence of the last glaciation on river incision rates? - Is there any evidence of a W-E gradient in incision rates that could reflect increasing uplift rates of the SW Alps and North Ligurian margin? First results tend to indicate that all river incision rates are remarkably similar since the Holocene glacial optimum, whereas two different tendencies arise before that time: catchments within the influence of Alpine glaciers tend to have larger incision rates during the last deglaciation, while at the same time catchments out of any glacial influence have slightly lower incision rates. This suggests that, at first order, the release of glacier meltwaters enhanced river incision rates downstream during the ~20-12 ka period.</p>

2021 ◽  
Author(s):  
Kseniia Golubenko ◽  
Eugene Rozanov ◽  
Genady Kovaltsov ◽  
Ari-Pekka Leppänen ◽  
Ilya Usoskin

<p>We present the first results of modelling of the short-living cosmogenic isotope <sup>7</sup>Be production, deposition, and transport using the chemistry-climate model SOCOLv<sub>3.0</sub> aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme,  based on gas tracers with and without nudging to the known meteorological fields. Production of <sup>7</sup>Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of <sup>7</sup>Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope <sup>7</sup>Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002–2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past. </p>


1984 ◽  
pp. 461-470 ◽  
Author(s):  
J. R. Incandela ◽  
M. Campbell ◽  
H. Frisch ◽  
S. Somalwar ◽  
M. Kuchnir ◽  
...  

2014 ◽  
Author(s):  
Fernando V. Laureano ◽  
Darryl E. Granger ◽  
Ivo Karmann ◽  
Valdir F. Novello

Isótopos cosmogênicos são formados na atmosfera, na superfície e nos primeiros metros da crosta terrestre através da colisão de partículas sub-atômicas com núcleos de elementos químicos ali existentes. Entre um largo espectro de isótopos gerados 10Be e 26Al produzidos no interior do mineral quartzo podem ser utilizados para calcular o soterramento de sedimentos e superfícies geológicas previamente expostos aos raios cósmicos. Três diferentes abordagens podem ser evocadas na obtenção de idades: (i) o soterramento simples para quando há um soterramento completo das amostras (> 10m); (ii) idades máximas e mínimas quando as amostras não se encontram a uma profundidade suficiente para interromper a produção pós-soterramento destes isótopos e (iii) o método da isócrona derivado de uma solução gráfica onde múltiplas amostras de uma mesma camada são utilizadas para obtenção de uma idade. Além das idades em si o emprego destes isótopos carrega outro importante resultado em estudos geomorfológicos, quer seja a taxa de erosão pré-soterramento. O método possui um alcance compreendido entre 100 mil e 4-5 milhões de anos antes do presente e uma resolução nunca inferior a 60 mil anos. A literatura registra a obtenção de idades em sedimentos de caverna, terraços fluviais, dunas, solos, entre outros, e soma resultados no campo da determinação de taxas de incisão fluvial, no balizamento geocronológico da evolução do modelado, na investigação da dinâmica de solos, bem como em investigações paleoclimáticas e arqueológicas.Palavras-chave: Isótopos cosmogênicos; Datação de soterramento; Sedimentos Abstract: BURIAL DATING WITH COSMOGENIC ISOTOPES 10BE AND 26AL: METHODOLOGICAL SYNTHESIS AND A BRIEF REVIEW OF APPLICATIONS IN GEOSCIENCES. Comogenic isotopes are formed in Earth’s atmosphere, surface and very shallow crust as a result of the collision of sub-atomic particles (cosmic ray) with nuclei in the atmosphere and rock. The cosmogenic isotopes 10Be and 26Al generated inside quartz grains may be used in burial dating of sediments or geological surfaces previously exposed to cosmic rays. Three different approaches can be used for age determinations: (i) simple burial dating when samples are totally buried from cosmic rays; (ii) minimum and maximum ages when samples did not get deep enough to avoid post burial production and (iii) an isochron method derived from a graphical solution where multiple samples from a single layer are used to obtain a single burial age. Burial dating also brings to light another important geomorphic result: the pre-burial erosion rate. The method can be applied in samples buried in a range of 100 thousand to 4-5 million years ago, with a resolution limited to about 60 thousand years. The literature records burial ages from cave sediments, fluvial terraces, dunes, soil related materials, and others, allowing researchers to constrain river incision rates, landscape evolution, soil dynamics and paleoclimate and archeological issues as well.Keywords: Cosmogenic isotopes; Burial dating, Sediments.


2007 ◽  
Vol 126 (1-4) ◽  
pp. 506-511 ◽  
Author(s):  
G. Leuthold ◽  
V. Mares ◽  
W. Ruhm ◽  
E. Weitzenegger ◽  
H. G. Paretzke
Keyword(s):  

2019 ◽  
Vol 488 (3) ◽  
pp. 3716-3744 ◽  
Author(s):  
T K Chan ◽  
D Kereš ◽  
P F Hopkins ◽  
E Quataert ◽  
K-Y Su ◽  
...  

ABSTRACT We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆ starburst, and L⋆ galaxies with different propagation models, including advection, isotropic, and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two-moment method. We forward-model and compare to observations of γ-ray emission from nearby and starburst galaxies. We reproduce the γ-ray observations of dwarf and L⋆ galaxies with constant isotropic diffusion coefficient $\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$. Advection-only and streaming-only models produce order of magnitude too large γ-ray luminosities in dwarf and L⋆ galaxies. We show that in models that match the γ-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ-ray emissivities. Models where CRs are ‘trapped’ in the star-forming disc have lower star formation efficiency, but these models are ruled out by γ-ray observations. For models with constant κ that match the γ-ray observations, CRs form extended haloes with scale heights of several kpc to several tens of kpc.


2001 ◽  
Vol 16 (26) ◽  
pp. 1667-1670
Author(s):  
◽  
YUQIAN MA

L3 + C is a branch experiment on L3 magnet spectrometer, which is located on the ring of LEP accelerator at CERN. To take the advantage of L3 muon chambers in its low threshold, wide dynamic range and high resolution, the momentum of cosmic ray muons in the range of 15–2000 GeV/c at a shallow depth of 30 m of molasse can be measured precisely. Since 1998, a scintillator detector system, a new fast trigger and DAQ system, and a small air shower array had been established for study the CR muon events independently. Up to August 2000, 8 billion muons and 25 million air shower events had been recorded. The first results for CR muon spectrum and the charge ratio etc. had been obtained.


2010 ◽  
Vol 10 (4) ◽  
pp. 831-841 ◽  
Author(s):  
D. Amitrano ◽  
M. Arattano ◽  
M. Chiarle ◽  
G. Mortara ◽  
C. Occhiena ◽  
...  

Abstract. Rockfalls are common instabilities in alpine areas and can cause significant damage. Since high mountains have been affected by an increasing number of these phenomena in the last years, a possible correlation with permafrost degradation induced by climate change has been hypothesized. To investigate this topic, a monitoring system, made of 5 triaxial geophones and 1 thermometer, was installed in 2007 at the Carrel hut (3829 m a.s.l., Matterhorn, North-western Alps), in the frame of the Interreg IIIA Alcotra project n. 196 "Permadataroc". The preliminary data processing relates to the classification of recorded signals, the identification of the significant microseismic events and the analysis of their distribution in time and space. The first results indicated a possible correlation between clusters of events and temperature trend, and a concentration of events in specific sectors of the rock mass. Research is still in progress. The recording of data for a longer period is planned to fully understand seasonal trends and spatial distribution of microseismic activity, and possible relations with permafrost degradation. Nevertheless, the preliminary observations prove that the monitoring system can detect noises generated by rock slope deformation. Once fully developed, this technique could become a helpful tool for early warning and preliminary stability assessments.


2008 ◽  
Vol 55 (1) ◽  
pp. 139-144 ◽  
Author(s):  
G. Aielli ◽  
A. Aloisio ◽  
M. G. Alviggi ◽  
S. Antonelli ◽  
S. Ask ◽  
...  
Keyword(s):  

1969 ◽  
Vol 28 ◽  
pp. 21-24 ◽  
Author(s):  
Carina Bendixen ◽  
Jørn Bo Jensen ◽  
Ole Bennike ◽  
Lars Ole Boldreel

The Kattegat region is located in the wrench zone between the Fennoscandian shield and the Danish Basin that has repeatedly been tectonically active. The latest ice advances during the Quaternary in the southern part of Kattegat were from the north-east, east and south-east (Larsen et al. 2009). The last deglaciation took place at c. 18 to 17 ka BP (Lagerlund & Houmark-Nielsen 1993; Houmark-Nielsen et al. 2012) and was followed by inundation of the sea that formed a palaeo-Kattegat (Conradsen 1995) with a sea level that was relatively high because of glacio-isostatic depression. Around 17 ka BP, the ice margin retreated to the Øresund region and meltwater from the retreating ice drained into Kattegat. Over the next millennia, the region was characterised by regression because the isostatic rebound of the crust surpassed the ongoing eustatic sea-level rise, and a regional lowstand followed at the late glacial to Holocene transition (Mörner 1969; Thiede 1987; Lagerlund & Houmark-Nielsen 1993; Jensen et al. 2002a, b).


Sign in / Sign up

Export Citation Format

Share Document