Tree-ring dating of snow avalanche history in Parâng Mountains (Southern Carpathians, Romania)

Author(s):  
Corina Todea ◽  
Olimpiu Pop

<p>In high mountainous areas worldwide, snow avalanches represent one of the main morphodynamic processes which influence the morphology of steep slopes. They usually disturb the forests, and represent a significant natural hazard that may endanger the safety of tourists exposed along the hiking trails crossing the avalanche-prone slopes. In the context of the growing tourism activities in the area where tourist become exposed to snow avalanche hazard, there is need for detailed analysis for documenting the past activity of this geomorphic process, especially in remote areas where historical data is lacking. Such mountainous area without snow avalanche monitoring and archival records is in Parâng Mountains (Southern Carpathians, Romania). On forested slopes, trees disturbed by snow-avalanches may record in their growth rings information about the past event occurrence. The main aim of this study is to improve the knowledge about the past snow avalanche history using tree-rings approach. To this end, 57 disturbed spruce (Picea abies (L.) Karst.) trees growing along an avalanche path located on the western slopes of the Parâng Mountains were sampled and their growth disturbances (scars, traumatic resin ducts, compression wood and growth suppression sequences) served to reconstruct the snow-avalanche history back to 1950. Tree-ring analyses allowed reconstructing a minimum of 14 snow avalanche events which occurred in the past along the investigated path. The tree-ring approach presented in this study proved to be a valuable tool in reconstructing snow avalanche history and compliting the snow avalanche database in Parâng Mountains. The number and spatial extent of documented snow avalanches evidence the potential snow avalanche hazards in the study area. The tree-ring data from the present study, together with those presented by the previous studies in the study area may further contribute to the snow avalanche hazard assessment. </p>

1985 ◽  
Vol 31 (108) ◽  
pp. 185-187 ◽  
Author(s):  
David R. Butler ◽  
George P. Malanson

AbstractWidespread wet-snow avalanches were observed on the southern boundary of Glacier National Park, Montana, in February 1979. Severe tilting, scarring, and breakage of trees were observed along a transverse trim-line of one path, 70 m from a wet-snow deposit. Tree-ring data were used to establish the date of occurrence, and the nature of damage was used to characterize the avalanche event. The event probably included a previously unrecognized dry-snow avalanche and associated wind blast. Such events present different problems for natural-hazard planning. The nature of vegetative damage along the margins of avalanche paths is shown to be a useful indicator of the characteristics of past unobserved avalanche events.


1985 ◽  
Vol 31 (108) ◽  
pp. 185-187 ◽  
Author(s):  
David R. Butler ◽  
George P. Malanson

AbstractWidespread wet-snow avalanches were observed on the southern boundary of Glacier National Park, Montana, in February 1979. Severe tilting, scarring, and breakage of trees were observed along a transverse trim-line of one path, 70 m from a wet-snow deposit. Tree-ring data were used to establish the date of occurrence, and the nature of damage was used to characterize the avalanche event. The event probably included a previously unrecognized dry-snow avalanche and associated wind blast. Such events present different problems for natural-hazard planning. The nature of vegetative damage along the margins of avalanche paths is shown to be a useful indicator of the characteristics of past unobserved avalanche events.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2139
Author(s):  
Paul H. Hutton ◽  
David M. Meko ◽  
Sujoy B. Roy

This work presents updated reconstructions of watershed runoff to San Francisco Estuary from tree-ring data to AD 903, coupled with models relating runoff to freshwater flow to the estuary and salinity intrusion. We characterize pre-development freshwater flow and salinity conditions in the estuary over the past millennium and compare this characterization with contemporary conditions to better understand the magnitude and seasonality of changes over this time. This work shows that the instrumented flow record spans the range of runoff patterns over the past millennium (averaged over 5, 10, 20 and 100 years), and thus serves as a reasonable basis for planning-level evaluations of historical hydrologic conditions in the estuary. Over annual timescales we show that, although median freshwater flow to the estuary has not changed significantly, it has been more variable over the past century compared to pre-development flow conditions. We further show that the contemporary period is generally associated with greater spring salinity intrusion and lesser summer–fall salinity intrusion relative to the pre-development period. Thus, salinity intrusion in summer and fall months was a common occurrence under pre-development conditions and has been moderated in the contemporary period due to the operations of upstream reservoirs, which were designed to hold winter and spring runoff for release in summer and fall. This work also confirms a dramatic decadal-scale hydrologic shift in the watershed from very wet to very dry conditions during the late 19th and early 20th centuries; while not unprecedented, these shifts have been seen only a few times in the past millennium. This shift resulted in an increase in salinity intrusion in the first three decades of the 20th century, as documented through early records. Population growth and extensive watershed modification during this period exacerbated this underlying hydrologic shift. Putting this shift in the context of other anthropogenic drivers is important in understanding the historical response of the estuary and in setting salinity targets for estuarine restoration. By characterizing the long-term behavior of San Francisco Estuary, this work supports decision-making in the State of California related to flow and salinity management for restoration of the estuarine ecosystem.


Author(s):  
Alejandro Casteller ◽  
Thomas Häfelfinger ◽  
Erika Cortés Donoso ◽  
Karen Podvin ◽  
Dominik Kulakowski ◽  
...  

Abstract. Gravitational natural hazards such as snow avalanches, rockfalls, shallow landslides and volcanic activity represent a risk factor for mountain communities around the world. In particular where documentary records about these processes are rare, decisions on risk management and land-use planning have to be based on a variety of other sources including vegetation and tree-ring data and natural hazard process models. We used a combination of these methods in order to evaluate dynamics of snow avalanches and other natural hazards at Valle de las Trancas, in the Biobío Region in Chile. Along this valley, natural hazards threaten not only the local human population, but also the numerous tourists attracted by outdoor recreational activities. Given the regional scarcity of documentary records, tree-ring methods were applied in order to reconstruct the local history of snow avalanches and debris flow events, which are the more important weather-related processes at respective tracks. A recent version of the model Rapid Mass MovementS (RAMMS), that includes influences of forest structure, was used to calculate different avalanche parameters such as runout distances and maximum pressures, taking into consideration the presence/absence of forest along the tracks as well as different modelled return periods. Our results show that local Nothofagus broadleaved forests contribute to a reduction of avalanche runout distances as well as impact pressures on present infrastructure, thus constituting a valuable ecosystem disaster risk reduction measure that can substitute or complement other traditional measures such as sheds.


2007 ◽  
Vol 3 (1) ◽  
pp. 119-128 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D'Arrigo

Abstract. Tree ring, ice core and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansion in Kamchatka over the past 400 years. A newly developed larch ring-width chronology (AD 1632–2004) is presented that is sensitive to past summer temperature variability. Individual low growth years in the larch record are associated with several known and proposed volcanic events from the Northern Hemisphere. The comparison of ring width minima and those of Melt Feature Index of Ushkovsky ice core helps confirm a 1–3 year dating accuracy~for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balances measured and estimated at several glaciers in 20th century, and with moraine building. According to the tree-ring data the 1860s–1880s were the longest coldest interval in the last 350 years. The latest part of this period (1880s) coincided with the positive anomaly in accumulation. This coincidence led to a positive mass balance, which is most likely responsible for glacier advances and moraine deposition of the end of 19th-early 20th centuries. As well as in some other high latitude regions (Spitsbergen, Polar Urals, Franz Jozef Land etc.) in Kamchatka these advances marked the last millennium glacial maximum. In full agreement with subsequent summer warming trend, inferred both from instrumental and tree ring data, glacier advances since 1880s have been less extensive. The late 18th century glacier expansion coincides with the inferred summer temperature decrease recorded by the ring width chronology. However, both the advance and the summer temperature decrease were less prominent that in the end of 19th century. Comparisons of the glacier history in Kamchatka with records from Alaska and the Canadian Rockies suggests broadly consistent intervals of glacier expansion and inferred summer cooling during solar irradiance minima.


2018 ◽  
Vol 18 (4) ◽  
pp. 1173-1186 ◽  
Author(s):  
Alejandro Casteller ◽  
Thomas Häfelfinger ◽  
Erika Cortés Donoso ◽  
Karen Podvin ◽  
Dominik Kulakowski ◽  
...  

Abstract. Gravitational natural hazards such as snow avalanches, rockfalls, shallow landslides and volcanic activity represent a risk to mountain communities around the world. In particular, where documentary records about these processes are rare, decisions on risk management and land-use planning have to be based on a variety of other sources including vegetation, tree-ring data and natural hazard process models. We used a combination of these methods in order to evaluate dynamics of natural hazards with a focus on snow avalanches at Valle Las Trancas, in the Biobío region in Chile. Along this valley, natural hazards threaten not only the local human population, but also the numerous tourists attracted by outdoor recreational activities. Given the regional scarcity of documentary records, tree-ring methods were applied in order to reconstruct the local history of snow avalanches and debris flow events, which are the most important weather-related processes at respective tracks. A recent version of the model Rapid Mass MovementS (RAMMS), which includes influences of forest structure, was used to calculate different avalanche parameters such as runout distances and maximum pressures, taking into consideration the presence or absence of forest along the tracks as well as different modeled return periods. Our results show that local Nothofagus broadleaf forests contribute to a reduction of avalanche runout distances as well as impact pressure on present infrastructure, thus constituting a valuable ecosystem disaster risk reduction measure that can substitute or complement other traditional measures such as snow sheds.


2020 ◽  
Author(s):  
Armelle Decaulne ◽  
Ionela-Georgiana Răchită ◽  
Mihai Hotea ◽  
Vasile Timur Chiş ◽  
Olimpiu Traian Pop

<p> <span>Snow avalanches </span>represent a common phenomenon <span>in Maramureş Mountains (Eastern Carpathians, Romania)</span> where they <span>occur frequently on higher steep slopes and reach in the runout zones the valley bottoms below 1000 m a.s.l. The presence of particular topo-climatic conditions influences the patterns of avalanche activity in terms of past frequency and spatial extent along the slope valleys. As the past snow-avalanche activity is not documented by written reports in the area, reliable information about avalanche history is missing. </span>However, the slopes are forested, trees repeatedly disturbed by snow avalanches record evidence of past events. <span>For this study we reconstructed the avalanche activity using tree rings as a source of proxy data. To date the snow-avalanche history, dendrochronological investigations have been carried out in two avalanche paths, along which living trees showed clear external signs of past disturbances related to mechanical impacts produced by snow avalanches. In each investigated path, a total number of 52 and respectively 118 trees have been sampled and their spatial position recorded with a GPS device. Tree-growth </span>anomalies (e.g. scars, callus tissues, the onset sequences of tangential rows of traumatic resin ducts, compression wood, growth suppression and release sequences) <span>related to snow avalanche disturbance identified within tree rings served to reconstruct past events with an annual resolution. The results indicate that, apart the 2005 major event witnessed and also confirmed by tree-ring dating, multiple other events have been reconstructed since the beginning of 20</span><sup><span>th</span></sup><span> century. Despite some inherent limitations of tree-ring methods in reconstructing past avalanche events, these dendrochronological investigations confirm their utility in deciphering the patterns of avalanche activity in Maramureş Mountains. Tree-ring studies contribute to a better understanding of the role of topographical and climatic factors which influence the spatio-temporal occurrence of snow avalanches.</span></p><p><span>This study represents a contribution to the joint research project 09-AUF, </span><span>‘‘</span><span><em>Activité des avalanches de neige dans les Carpates Orientales Roumaines et Ukrainiennes - </em></span><span> ACTIVNEIGE</span><span>’’</span><span>, co-funded by the </span><span><em>Agence Universitaire de la Francophonie (AUF)</em></span><span> and </span><span><em>Institutul de Fizică Atomică (IFA), Romania</em></span><span>.</span></p>


1980 ◽  
Vol 26 (94) ◽  
pp. 345-354 ◽  
Author(s):  
G. L. Freer ◽  
P. A. Schaerer

AbstractMany developed areas in British Columbia are exposed to snow-avalanche hazards. Avalanche-hazard zoning has been undertaken by the British Columbia Ministry of Transportation, Communications, and Highways during the past five years. Recommendations from these zoning studies are forwarded to those agencies responsible for land-use zoning and development approval. Existing and possible legislation are described, as well as problems associated with implementation of the legislation. Technical considerations are outlined; interpretation of vegetation is a very important factor in evaluating each avalanche site. Calculation of run-out distances and consideration of other factors serve as a check on the vegetation interpretation. A special safety factor has been developed.Socio-political considerations with respect to British Columbia are described. Existing developments have the most wide-ranging implications.


Author(s):  
Paul H Hutton ◽  
David M Meko ◽  
Sujoy B Roy

This work presents updated reconstructions of watershed runoff to San Francisco Estuary from tree-ring data to AD 903, coupled with models relating runoff to freshwater flow to the estuary and salinity intrusion. We characterize pre-development freshwater flow and salinity conditions in the estuary over the past millennium and compare this characterization with contemporary conditions to better understand the magnitude and seasonality of changes over this time. This work shows that the instrumented flow record spans the range of runoff patterns over the past millennium (averaged over five, ten, twenty and one hundred years), and thus serves as a reasonable basis for planning-level evaluations of historical hydrologic conditions in the estuary. Over annual timescales we show that, although median freshwater flow to the estuary has not changed significantly, it has been more variable over the past century compared to pre-development flow conditions. We further show that the contemporary period is generally associated with greater spring salinity intrusion and lesser summer-fall salinity intrusion relative to the pre-development period. Thus, salinity intrusion in summer and fall months was a common occurrence under pre-development conditions and has been moderated in the contemporary period due to the operations of upstream reservoirs, which were designed to hold winter and spring runoff for release in summer and fall. This work also confirms a dramatic decadal-scale hydrologic shift in the watershed from very wet to very dry conditions during the late 19th and early 20th centuries; while not unprecedented, these shifts have been seen only a few times in the past millennium. This shift resulted in an increase in salinity intrusion in the first three decades of the 20th century, as documented through early records. Population growth and extensive watershed modification during this period exacerbated this underlying hydrologic shift. Putting this shift in the context of other anthropogenic drivers is important in understanding the historical response of the estuary and in setting salinity targets for estuarine restoration. By characterizing the long-term behavior of San Francisco Estuary, this work supports decision-making in the State of California related to flow and salinity management for restoration of the estuarine ecosystem.


2020 ◽  
Vol 22 (1) ◽  
pp. 73-85
Author(s):  
Corina TODEA ◽  
Olimpiu Traian Pop ◽  
Daniel GERMAIN

Snow avalanches are a common phenomenon in Parâng Mountains (Southern Carpathians, Romania) perturbing tourism activities and associated infrastructures, damaging forests, and causing fatalities. Its past history is an es­sential information to gather while assessing the hazard zonation areas. Usually, in Romania snow–avalanche activ­ity occurring in forested areas are neither monitored, nor recorded by historical archives. In these areas, environ­mental archives such as tree rings may provide useful information about the past avalanche activity. The purpose of the present study is to reconstruct snow–avalanche history with tree rings along a path located below Cârja Peak (2405 m a.s.l.), an area where past snow–avalanche activity still remains underestimated. In this sense, 57 Norway spruce (Picea abies (L.) Karst.) trees showing clear signs of disturbance by snow avalanches were sampled and the growth anomalies associated with the mechanical impact produced by snow avalanches on trees were identified within their rings and served to reconstruct past events. The reconstructed chronology covers the period 1994–2018 showing the occurrence of a minimum of 11 major events, with an average return period of 2.1 years. Tree–ring records provided the most consistent avalanche event chronology in the study area. Although the lim­ited extension of the chronology back in time, a better understanding of snow–avalanche history which may be gained through dendro­chronological reconstructions represent nonetheless useful and pertinent information to consider before the imple­mentation and development of infrastructure in this mountain avalanche–prone area.


Sign in / Sign up

Export Citation Format

Share Document