Reconstructing snow-avalanche activity with tree rings in Maramureş Mountains (Eastern Carpathians, Romania)

Author(s):  
Armelle Decaulne ◽  
Ionela-Georgiana Răchită ◽  
Mihai Hotea ◽  
Vasile Timur Chiş ◽  
Olimpiu Traian Pop

<p> <span>Snow avalanches </span>represent a common phenomenon <span>in Maramureş Mountains (Eastern Carpathians, Romania)</span> where they <span>occur frequently on higher steep slopes and reach in the runout zones the valley bottoms below 1000 m a.s.l. The presence of particular topo-climatic conditions influences the patterns of avalanche activity in terms of past frequency and spatial extent along the slope valleys. As the past snow-avalanche activity is not documented by written reports in the area, reliable information about avalanche history is missing. </span>However, the slopes are forested, trees repeatedly disturbed by snow avalanches record evidence of past events. <span>For this study we reconstructed the avalanche activity using tree rings as a source of proxy data. To date the snow-avalanche history, dendrochronological investigations have been carried out in two avalanche paths, along which living trees showed clear external signs of past disturbances related to mechanical impacts produced by snow avalanches. In each investigated path, a total number of 52 and respectively 118 trees have been sampled and their spatial position recorded with a GPS device. Tree-growth </span>anomalies (e.g. scars, callus tissues, the onset sequences of tangential rows of traumatic resin ducts, compression wood, growth suppression and release sequences) <span>related to snow avalanche disturbance identified within tree rings served to reconstruct past events with an annual resolution. The results indicate that, apart the 2005 major event witnessed and also confirmed by tree-ring dating, multiple other events have been reconstructed since the beginning of 20</span><sup><span>th</span></sup><span> century. Despite some inherent limitations of tree-ring methods in reconstructing past avalanche events, these dendrochronological investigations confirm their utility in deciphering the patterns of avalanche activity in Maramureş Mountains. Tree-ring studies contribute to a better understanding of the role of topographical and climatic factors which influence the spatio-temporal occurrence of snow avalanches.</span></p><p><span>This study represents a contribution to the joint research project 09-AUF, </span><span>‘‘</span><span><em>Activité des avalanches de neige dans les Carpates Orientales Roumaines et Ukrainiennes - </em></span><span> ACTIVNEIGE</span><span>’’</span><span>, co-funded by the </span><span><em>Agence Universitaire de la Francophonie (AUF)</em></span><span> and </span><span><em>Institutul de Fizică Atomică (IFA), Romania</em></span><span>.</span></p>

2021 ◽  
Author(s):  
Corina Todea ◽  
Olimpiu Pop

<p>Snow avalanches (SAs) are a widespread natural hazard in the Carpathians, damaging forests and threatening properties, tourism infrastructures and people. In Şureanu Mountains (Southern Carpathians), SA activity is not documented in the historical archives and consequently information regarding the SA frequency and their spatial extent is lacking. Along the forested avalanche paths, disturbed trees record selectively in their annual rings evidence of past events. Tree rings represent therefore a natural archive which can provide valuable information about the past SA activity. The aim of the present study is to reconstruct the occurrence and spatial extent of past SA activity with tree rings in Şureanu Mts. For this purpose, two avalanche paths adjacent to a ski area located in the central part of Şureanu Mts., have been investigated. Samples (cores and discs) collected from 121 and 141 Norway spruce (Picea abies (L.) Karst.) trees damaged by SAs along both paths have been analyzed. Tree-growth anomalies (e.g. scars, callus tissues, onset sequences of tangential rows of traumatic resin ducts, compression wood and growth suppression sequences) associated with the mechanical impact produced by SAs on trees were identified and used to reconstruct the SA history. Within the investigated paths, the reconstructed SA chronology spans the period of the last century. The minimum SA frequency and maximum extent reconstructed served to define the return periods within the two paths investigated. Tree-ring derived records provided the most consistent SA chronology in the study area, and can further be integrated in the avalanche hazard zoning assessment.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


IAWA Journal ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 331-S5 ◽  
Author(s):  
C. Alvites ◽  
G. Battipaglia ◽  
G. Santopuoli ◽  
H. Hampel ◽  
R.F. Vázquez ◽  
...  

ABSTRACTRelict tree species in the Andean mountains are important sources of information about climate variability and climate change. This study deals with dendroclimatology and growth patterns in Polylepis reticulata Hieron., growing at high elevation (mean of 4000 m a.s.l.) in three sites of the Ecuadorian Andes. The aims of the research were: (i) characterizing tree-ring boundaries; (ii) describing tree-ring patterns of the study sites; (iii) investigating the relationships between climate and radial tree growth; and (iv) determining the spatial correlation between seasonal climatic factors and tree-ring width of P. reticulata. Tree rings were characterized by semi-ring porosity and slight differences in fibre wall thickness between latewood and subsequent earlywood. In all sampling sites, tree rings in heartwood were more clearly visible than in sapwood. Tree-ring width was more related to temperature than to precipitation, with growth being also affected by site conditions and stand structure, as well as other local factors. No significant relationships were found between tree-ring chronologies of P. reticulata and El Niño-Southern Oscillation (ENSO) and Vapour Pressure Deficit indices. The study highlights that there is not a clear driving climate factor for radial growth of P. reticulata. Additional research is needed to study growth dynamics of this species and the impacts of local environmental variables.


1985 ◽  
Vol 31 (108) ◽  
pp. 185-187 ◽  
Author(s):  
David R. Butler ◽  
George P. Malanson

AbstractWidespread wet-snow avalanches were observed on the southern boundary of Glacier National Park, Montana, in February 1979. Severe tilting, scarring, and breakage of trees were observed along a transverse trim-line of one path, 70 m from a wet-snow deposit. Tree-ring data were used to establish the date of occurrence, and the nature of damage was used to characterize the avalanche event. The event probably included a previously unrecognized dry-snow avalanche and associated wind blast. Such events present different problems for natural-hazard planning. The nature of vegetative damage along the margins of avalanche paths is shown to be a useful indicator of the characteristics of past unobserved avalanche events.


2020 ◽  
Vol 22 (1) ◽  
pp. 73-85
Author(s):  
Corina TODEA ◽  
Olimpiu Traian Pop ◽  
Daniel GERMAIN

Snow avalanches are a common phenomenon in Parâng Mountains (Southern Carpathians, Romania) perturbing tourism activities and associated infrastructures, damaging forests, and causing fatalities. Its past history is an es­sential information to gather while assessing the hazard zonation areas. Usually, in Romania snow–avalanche activ­ity occurring in forested areas are neither monitored, nor recorded by historical archives. In these areas, environ­mental archives such as tree rings may provide useful information about the past avalanche activity. The purpose of the present study is to reconstruct snow–avalanche history with tree rings along a path located below Cârja Peak (2405 m a.s.l.), an area where past snow–avalanche activity still remains underestimated. In this sense, 57 Norway spruce (Picea abies (L.) Karst.) trees showing clear signs of disturbance by snow avalanches were sampled and the growth anomalies associated with the mechanical impact produced by snow avalanches on trees were identified within their rings and served to reconstruct past events. The reconstructed chronology covers the period 1994–2018 showing the occurrence of a minimum of 11 major events, with an average return period of 2.1 years. Tree–ring records provided the most consistent avalanche event chronology in the study area. Although the lim­ited extension of the chronology back in time, a better understanding of snow–avalanche history which may be gained through dendro­chronological reconstructions represent nonetheless useful and pertinent information to consider before the imple­mentation and development of infrastructure in this mountain avalanche–prone area.


2018 ◽  
Vol 199 ◽  
pp. 06005
Author(s):  
Carla Driessen ◽  
Michael Raupach

In the context of a current joint research project a monitoring system to detect leakages in bridges is implemented by using a textile reinforced concrete interlayer which consists of two carbon meshes with a spacing of 15 mm and a new developed mortar. Between the two carbon meshes the resistivity is measured with alternating current. If a leakage in the bridge deck sealing occurs and water gets into the interlayer a drop in the measured resistivity occurs and the leakage is detected. In this case repair measures can be carried out in an early stage or a preventive cathodic protection can be switched on. To assess which sizes of leakages are detectable under which boundary conditions, laboratory tests and tests on a 100 m2 outdoor demonstrator were carried out. Therefore leakages were artificially produced and the changes in the measured resistivity values were observed under different climatic conditions. Impacts such as the form of the leakages or the position of the leakages in the measuring field were varied.


1971 ◽  
Vol 1 (4) ◽  
pp. 419-449 ◽  
Author(s):  
Harold C. Fritts

Dendrochronology is the science of dating annual growth layers (rings) in woody plants. Two related subdisciplines are dendroclimatology and dendroecology. The former uses the information in dated rings to study problems of present and past climates, while the latter deals with changes in the local environment rather than regional climate.Successful applications of dendroclimatology and dendroecology depend upon careful stratification. Ring-width samples are selected from trees on limiting sites, where widths of growth layers vary greatly from one year to the next (sensitivity) and autocorrelation of the widths is not high. Rings also must be cross-dated and sufficiently replicated to provide precise dating. This selection and dating assures that the climatic information common to all trees, which is analogous to the “signal”, is large and properly placed in time. The random error or nonclimatic variations in growth, among trees, is analogous to “noise” and is reduced when ring-width indices are averaged for many trees.Some basic facts about the growth are presented along with a discussion of important physiological processes operating throughout the roots, stems, and leaves. Certain gradients associated with tree height, cambial age, and physiological activity control the size of the growth layers as they vary throughout the tree. These biological gradients interact with environmental variables and complicate the task of modeling the relationships linking growth with environment.Biological models are described for the relationships between variations in ring widths from conifers on arid sites, and variations in temperature and precpitation. These climatic factors may influence the tree at any time in the year. Conditions preceding the growing season sometimes have a greater influence on ring width than conditions during the growing season, and the relative effects of these factors on growth vary with latitude, altitude, and differences in factors of the site. The effects of some climatic factors on growth are negligible during certain times of the year, but important at other times. Climatic factors are sometimes directly related to growth and at other times are inversely related to growth. Statistical methods are described for ascertaining these differences in the climatic response of trees from different sites.A practical example is given of a tree-ring study and the mechanics are described for stratification and selection of tree-ring materials, for laboratory preparation, for cross-dating, and for computer processing. Several methods for calibration of the ring-width data with climatic variation are described. The most recent is multivariate analysis, which allows simultaneous calibration of a variety of tree-ring data representing different sites with a number of variables of climate.Several examples of applications of tree-ring analysis to problems of environment and climate are described. One is a specification from tree rings of anomalies in atmosphere circulation for a portion of the Northern Hemisphere since 1700 A.D. Another example treats and specifies past conditions in terms of conditional probabilities. Other methods of comparing present climate with past climate are described along with new developments in reconstructing past hydrologic conditions from tree rings.Tree-ring studies will be applied in the future to problems of temperate and mesic environments, and to problems of physiological, genetic, and anatomical variations within and among trees. New developments in the use of X-ray techniques will facilitate the measurement and study of cell size and cell density. Tree rings are an important source of information on productivity and dry-matter accumulation at various sites. Some tree-ring studies will deal with environmental pollution. Statistical developments will improve estimation of certain past anomalies in weather factors and the reconstructtion of atmosphere circulation associated with climate variability and change. Such information should improve chances for measuring and assessing the possibility of inadvertent modification of climate by man.


2020 ◽  
Author(s):  
Corina Todea ◽  
Olimpiu Pop

<p>In high mountainous areas worldwide, snow avalanches represent one of the main morphodynamic processes which influence the morphology of steep slopes. They usually disturb the forests, and represent a significant natural hazard that may endanger the safety of tourists exposed along the hiking trails crossing the avalanche-prone slopes. In the context of the growing tourism activities in the area where tourist become exposed to snow avalanche hazard, there is need for detailed analysis for documenting the past activity of this geomorphic process, especially in remote areas where historical data is lacking. Such mountainous area without snow avalanche monitoring and archival records is in Parâng Mountains (Southern Carpathians, Romania). On forested slopes, trees disturbed by snow-avalanches may record in their growth rings information about the past event occurrence. The main aim of this study is to improve the knowledge about the past snow avalanche history using tree-rings approach. To this end, 57 disturbed spruce (Picea abies (L.) Karst.) trees growing along an avalanche path located on the western slopes of the Parâng Mountains were sampled and their growth disturbances (scars, traumatic resin ducts, compression wood and growth suppression sequences) served to reconstruct the snow-avalanche history back to 1950. Tree-ring analyses allowed reconstructing a minimum of 14 snow avalanche events which occurred in the past along the investigated path. The tree-ring approach presented in this study proved to be a valuable tool in reconstructing snow avalanche history and compliting the snow avalanche database in Parâng Mountains. The number and spatial extent of documented snow avalanches evidence the potential snow avalanche hazards in the study area. The tree-ring data from the present study, together with those presented by the previous studies in the study area may further contribute to the snow avalanche hazard assessment. </p>


1985 ◽  
Vol 31 (108) ◽  
pp. 185-187 ◽  
Author(s):  
David R. Butler ◽  
George P. Malanson

AbstractWidespread wet-snow avalanches were observed on the southern boundary of Glacier National Park, Montana, in February 1979. Severe tilting, scarring, and breakage of trees were observed along a transverse trim-line of one path, 70 m from a wet-snow deposit. Tree-ring data were used to establish the date of occurrence, and the nature of damage was used to characterize the avalanche event. The event probably included a previously unrecognized dry-snow avalanche and associated wind blast. Such events present different problems for natural-hazard planning. The nature of vegetative damage along the margins of avalanche paths is shown to be a useful indicator of the characteristics of past unobserved avalanche events.


2007 ◽  
Vol 37 (10) ◽  
pp. 1915-1923 ◽  
Author(s):  
F. Campelo ◽  
E. Gutiérrez ◽  
M. Ribas ◽  
C. Nabais ◽  
H. Freitas

The influence of climatic factors on tree-ring width and the formation of double rings was studied in Quercus ilex L. growing in a coppice stand left unmanaged for 22 years. Ten trees were felled and discs were taken every 30 cm from bole and dominant branches. Dendrometer bands were installed on 10 nearby trees and the data recorded were used to confirm the accuracy of our tree-ring identification. They were also used to relate the seasonal radial growth pattern to double-ring formation. Double rings were frequent and occurred consistently along the stem. Two types of double rings could be recognized according to their width: type I, with the extra growth band accounting for approximately 50% of the tree ring; and type II, with a narrow extra growth band. Type I double rings were formed when approximately 1/2 of the growing-season precipitation occurred during the second growth period of the season and after the summer drought. Type II double rings occurred when approximately 1/3 of the precipitation in the growing season occurred after the summer drought. The formation of double rings was triggered by rainfall in summer and the extra growth-band width was related to summer and autumn environmental conditions. Double rings in Q. ilex can potentially be used in dendroclimatological studies, as they are formed in response to climatic conditions within the growing season.


Sign in / Sign up

Export Citation Format

Share Document