NASA’s TropOMI Aerosol Products: Algorithm and Preliminary Evaluation Results

Author(s):  
Changwoo Ahn ◽  
Omar Torres ◽  
Glen Jaross ◽  
Hiren Jethva ◽  
Xiaoguang Xu ◽  
...  

<p>The extended hyperspectral capability with improved spatial resolution of the S5-P/TROPOMI instrument makes it more useful than OMI for observing not only trace gases but also aerosols. We have developed a research algorithm (TROPOMAER) for retrieving aerosol properties from S5-P/TROPOMI L1-b (Version 01) radiances using a locally derived radiometric calibration. The TROPOMAER algorithm is based on the OMI aerosol algorithm (OMAERUV) which has been used for producing operational aerosol products for the last 14 years. In addition to the standard UV Aerosol Index (UVAI) product, TROPOMI measured radiances at 354 and 388 nm are used for retrieving Aerosol Extinction Optical Depth (AOD), Single Scattering Albedo (SSA) under cloud free conditions and above-cloud Aerosol Extinction Optical Depth (ACAOD). Collocated Suomi-NPP/VIIRS cloud mask product is also integrated with TROPOMAER for screening sub-pixel cloud contamination in the retrieved aerosol products. Initial evaluation results of TROPOMI aerosol products using AERONET AOD and SSA observations will be presented. We will also discuss preliminary results of new algorithmic approaches to retrieve aerosol layer height using TROPOMI Oxygen-B band observations, and aerosol type identification with SWIR measurements.</p>

2014 ◽  
Vol 14 (23) ◽  
pp. 32177-32231 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.


2005 ◽  
Vol 62 (4) ◽  
pp. 1032-1052 ◽  
Author(s):  
Ralph Kahn ◽  
Wen-Hao Li ◽  
John V. Martonchik ◽  
Carol J. Bruegge ◽  
David J. Diner ◽  
...  

Abstract Studying aerosols over ocean is one goal of the Multiangle Imaging Spectroradiometer (MISR) and other spaceborne imaging systems. But top-of-atmosphere equivalent reflectance typically falls in the range of 0.03 to 0.12 at midvisible wavelengths and can be below 0.01 in the near-infrared, when an optically thin aerosol layer is viewed over a dark ocean surface. Special attention must be given to radiometric calibration if aerosol optical thickness, and any information about particle microphysical properties, are to be reliably retrieved from such observations. MISR low-light-level vicarious calibration is performed in the vicinity of remote islands hosting Aerosol Robotic Network (AERONET) sun- and sky-scanning radiometers, under low aerosol loading, low wind speed, relatively cloud free conditions. MISR equivalent reflectance is compared with values calculated from a radiative transfer model constrained by coincident, AERONET-retrieved aerosol spectral optical thickness, size distribution, and single scattering albedo, along with in situ wind measurements. Where the nadir view is not in sun glint, MISR equivalent reflectance is also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance. The authors push the limits of the vicarious calibration method’s accuracy, aiming to assess absolute, camera-to-camera, and band-to-band radiometry. Patterns repeated over many well-constrained cases lend confidence to the results, at a few percent accuracy, as do additional vicarious calibration tests performed with multiplatform observations taken during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) campaign. Conclusions are strongest in the red and green bands, but are too uncertain to accept for the near-infrared. MISR nadir-view and MODIS low-light-level absolute reflectances differ by about 4% in the blue and green bands, with MISR reporting higher values. In the red, MISR agrees with MODIS band 14 to better than 2%, whereas MODIS band 1 is significantly lower. Compared to the AERONET-constrained model, the MISR aft-viewing cameras report reflectances too high by several percent in the blue, green, and possibly the red. Better agreement is found in the nadir- and the forward-viewing cameras, especially in the blue and green. When implemented on a trial basis, calibration adjustments indicated by this work remove 40% of a 0.05 bias in retrieved midvisible aerosol optical depth over dark water scenes, produced by the early postlaunch MISR algorithm. A band-to-band correction has already been made to the MISR products, and the remaining calibration adjustments, totaling no more than a few percent, are planned.


2012 ◽  
Vol 12 (2) ◽  
pp. 4031-4071 ◽  
Author(s):  
L. Mei ◽  
Y. Xue ◽  
G. de Leeuw ◽  
T. Holzer-Popp ◽  
J. Guang ◽  
...  

Abstract. A novel approach for the joint retrieval of aerosol optical depth (AOD) and surface reflectance, using Meteosat Second Generation – Spinning Enhanced Visible and Infrared Imagers (MSG/SEVIRI) observations in two solar channels, is presented. The retrieval is based on a time series (TS) technique, which makes use of the two visible bands at 0.6 μm and 0.8 μm in three orderly scan times (15 min interval between two scans) to retrieve the AOD over land. Using the radiative transfer equation for plane-parallel atmospheres two coupled differential equations for the upward and downward fluxes are derived. The boundary conditions for the upward and downward fluxes at the top and at the bottom of the atmosphere are used in these equations to provide an analytic solution for the surface reflectance. To derive these fluxes, the aerosol single scattering albedo (SSA) and asymmetry factor are required to provide a solution. These are provided from a set of six pre-defined aerosol types with the SSA and asymmetry factor (g). We assume one aerosol type for a grid of 1° × 1° and the surface reflectance changes little between two consequent scans. A k approximation was used in the inversion to find the best solution of atmospheric properties and surface reflectance. The algorithm makes use of numerical minimisation routines to obtain the optimal solution of atmospheric properties and surface reflectance by selection of the most suitable aerosol type from pre-defined sets. Also, it is assumed that the surface reflectance is little influenced by aerosol scattering at 1.6 μm and therefore the ratio of surface reflectances in the solar band for two consequent scans can be well-approximated by the ratio of the reflectances at 1.6 μm. A further assumption is that the surface reflectance varies only slightly over a period of 30 min. A detailed analysis of the retrieval results show that it is suitable for AOD retrieval over land. Six Aerosol Robotic Network (AERONET) sites with different surface types were used for detailed analysis and 42 other AERONET sites were used for validation. From 445 collocations representing stable and homogeneous aerosol type, we found that >75% of MSG-retrieved AOD values compared to AERONET observed values with an error envelope of ±0.05 ± 0.15τ and a high correlation (R > 0.86). The AOD datasets derived using the TS method with SEVIRI data was also compared with collocated AOD products derived from the NASA TERRA and AQUA MODIS data using the dark dense vegetation (DDV) method and the Deep Blue algorithms. Using the TS method, AOD could be retrieved for more pixels than with the NASA Deep Blue algorithm. The AOD values derived compare favourably.


2009 ◽  
Vol 2 (6) ◽  
pp. 3221-3264
Author(s):  
J. Leitão ◽  
A. Richter ◽  
M. Vrekoussis ◽  
A. Kokhanovsky ◽  
Q. J. Zhang ◽  
...  

Abstract. The accurate determination of nitrogen dioxide (NO2) tropospheric vertical columns from satellite measurements depends, partly, on the airmass factor (AMF) used. A sensitivity study was performed with the radiative transfer model SCIATRAN to better understand the impact of aerosols in the calculation of NO2 AMFs. This influence was studied by varying the NO2 and aerosol vertical distributions, as well as physical and optical properties of the particles. The key factors for these calculations were identified as the relation between trace gas and aerosol vertical profiles, the optical depth of the aerosol layer, and single scattering albedo. Overall it was found that aerosol mixed with the trace gas increases the measurements' sensitivity. The largest change, a factor of ~2 relative to the situation without aerosols, was found when a low layer of aerosol (600 m) was combined with a homogenous NO2 layer of 1.0 km. A layer of aerosol above the NO2 will usually reduce the sensitivity of the satellite measurement, a situation found mostly for runs with discrete elevated aerosol layers representative for long-range transport of aerosols that can generate a decrease of the AMF values of up to 70%. The use of measured aerosol profiles and modelled NO2 resulted, generally, in a much smaller changes of AMF relative to the pure Rayleigh case. Exceptions are some events of elevated layers with high aerosol optical depth that lead to a strong decrease of the AMF values. These results highlight the importance of aerosols in the retrieval of tropospheric NO2 columns from space and indicate the need for detailed information on aerosol properties and vertical distribution.


2020 ◽  
Author(s):  
Yohei Shinozuka ◽  
Meloë S. Kacenelenbogen ◽  
Sharon P. Burton ◽  
Steven G. Howell ◽  
Paquita Zuidema ◽  
...  

Abstract. To help satellite retrieval of aerosols and studies of their radiative effects, we demonstrate that daytime 532 nm aerosol optical depth over low-level clouds is similar to that in neighboring clear skies at the same heights in recent airborne lidar and sunphotometer observations above the southeast Atlantic. The mean AOD difference is between 0 and −0.01, when comparing the two sides, each up to 20 km wide, of cloud edges. The difference is not statistically significant according to a paired t-test. Systematic differences in the wavelength dependence of AOD and in situ single scattering albedo are also minute. These results hold regardless of the vertical distance between cloud top and aerosol layer bottom. AOD aggregated over ~ 2° grid boxes for each of September 2016, August 2017 and October 2018 also shows little correlation with the presence of low-level clouds. We posit that a satellite retrieval artifact is entirely responsible for a previous finding of generally smaller AOD over clouds (Chung et al., 2016), at least for the region and season of our study. Our results also suggest that the same values can be assumed for the intensive properties of free-tropospheric biomass-burning aerosol regardless of whether clouds exist below.


2010 ◽  
Vol 3 (2) ◽  
pp. 475-493 ◽  
Author(s):  
J. Leitão ◽  
A. Richter ◽  
M. Vrekoussis ◽  
A. Kokhanovsky ◽  
Q. J. Zhang ◽  
...  

Abstract. The accurate determination of nitrogen dioxide (NO2) tropospheric vertical columns from satellite measurements depends strongly on the airmass factor (AMF) used. A sensitivity study was performed with the radiative transfer model SCIATRAN to better understand the impact of aerosols on the calculation of NO2 AMFs. This influence was studied by varying the NO2 and aerosol vertical distributions, as well as physical and optical properties of the particles. In terms of aerosol definitions, the key factors for these calculations were identified as the relation between trace gas and aerosol vertical profiles, the optical depth of the aerosol layer, and single scattering albedo. In addition, surface albedo also has a large impact on the calculations. Overall it was found that particles mixed with the trace gas increases the measurements' sensitivity, but only when the aerosol is not very absorbing. The largest change, a factor of ~2 relative to the situation without aerosols, was found when a low layer of aerosol (600 m) was combined with a homogenous NO2 layer of 1.0 km. A layer of aerosol above the NO2 usually reduces the sensitivity of the satellite measurement. This situation is found mostly for runs with discrete elevated aerosol layers (representative for long-range transport) that can generate a decrease of the AMF values of up to 70%. The use of measured aerosol profiles and modelled NO2 resulted, generally, in much smaller changes of AMF relative to the pure Rayleigh case. Exceptions are some events of elevated layers with high aerosol optical depth that lead to a strong decrease of the AMF values. These results highlight the importance of aerosols in the retrieval of tropospheric NO2 columns from space and indicate the need for detailed information on aerosol properties and vertical distribution.


2015 ◽  
Vol 15 (10) ◽  
pp. 5743-5760 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.


2013 ◽  
Vol 6 (10) ◽  
pp. 2563-2576 ◽  
Author(s):  
N. Mateshvili ◽  
D. Fussen ◽  
G. Mateshvili ◽  
I. Mateshvili ◽  
F. Vanhellemont ◽  
...  

Abstract. Ground-based spectral measurements of twilight sky brightness were carried out between September 2009 and August 2011 in Georgia, South Caucasus. The algorithm which allowed to retrieve the lower stratospheric and upper tropospheric aerosol extinction profiles was developed. The Monte-Carlo technique was used to correctly represent multiple scattering in a spherical atmosphere. The estimated stratospheric aerosol optical depths at a wavelength of 780 nm were: 6 × 10−3 ± 2 × 10−3 (31 August 2009–29 November 2009), 2.5 × 10−3 ± 7 × 10−4 (20 March 2010–15 January 2011) and 8 × 10−3 ± 3 × 10−3 (18 July 2011–3 August 2011). The optical depth values correspond to the moderately elevated stratospheric aerosol level after the Sarychev eruption in 2009, background stratospheric aerosol layer, and the volcanically disturbed stratospheric aerosol layer after the Nabro eruption in June 2011.


Author(s):  
Tang-Huang Lin ◽  
Gin-Rong Liu ◽  
Chian-Yi Liu

In general, the type of atmospheric aerosols can be efficiently identified with the characteristics of optical properties, such as Ångström exponent (AE) and single scattering albedo (SSA). However, the retrieval of SSA is not frequently available to global area which may cause the difficulty in the identification of aerosol type. Since aerosol optical depth (AOD) can be easily requested, a novel index in terms of AOD, Normalized Gradient Aerosol Index (NGAI), is proposed to get over the constraint on SSA providing. With the NGAI derived from MODIS AOD products, the type of atmospheric aerosols can be clearly categorized between mineral dusts, biomass burning and anthropogenic pollutants. The results of aerosol type categorization show the well agreement with the ground-based observations (AERONET) in AE and SSA properties, implying that the proposed index equips highly practical for the application of aerosols type categorization by means of remote sensing. In addition, the fraction of AOD compositions can be potentially determined according to the value of index after compared with the products of CALIPSO Aerosol Subtype.


2022 ◽  
Vol 15 (1) ◽  
pp. 61-77
Author(s):  
Sabrina P. Cochrane ◽  
K. Sebastian Schmidt ◽  
Hong Chen ◽  
Peter Pilewskie ◽  
Scott Kittelman ◽  
...  

Abstract. Aerosol heating due to shortwave absorption has implications for local atmospheric stability and regional dynamics. The derivation of heating rate profiles from space-based observations is challenging because it requires the vertical profile of relevant properties such as the aerosol extinction coefficient and single-scattering albedo (SSA). In the southeastern Atlantic, this challenge is amplified by the presence of stratocumulus clouds below the biomass burning plume advected from Africa, since the cloud properties affect the magnitude of the aerosol heating aloft, which may in turn lead to changes in the cloud properties and life cycle. The combination of spaceborne lidar data with passive imagers shows promise for future derivations of heating rate profiles and curtains, but new algorithms require careful testing with data from aircraft experiments where measurements of radiation, aerosol, and cloud parameters are better colocated and readily available. In this study, we derive heating rate profiles and vertical cross sections (curtains) from aircraft measurements during the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project in the southeastern Atlantic. Spectrally resolved irradiance measurements and the derived column absorption allow for the separation of total heating rates into aerosol and gas (primarily water vapor) absorption. The nine cases we analyzed capture some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction). HRE, which accounts for the overall aerosol loading as well as vertical distribution of the aerosol layer, varies little with altitude as opposed to the standard heating rate. The large case-to-case variability for ORACLES is significantly reduced after converting from heating rate to HRE, allowing us to quantify its dependence on SSA, cloud albedo, and solar zenith angle.


Sign in / Sign up

Export Citation Format

Share Document