A novel artificial neural network for flood forecasting based on deep learning encoder-decoder architecture

Author(s):  
Kangling Lin ◽  
Hua Chen ◽  
Chong-Yu Xu ◽  
Yanlai Zhou ◽  
Shenglian Guo

<p>With the rapid growth of deep learning recently, artificial neural networks have been propelled to the forefront in flood forecasting via their end-to-end learning ability. Encoder-decoder architecture, as a novel deep feature extraction, which captures the inherent relationship of the data involved, has emerged in time sequence forecasting nowadays. As the advance of encoder-decoder architecture in sequence to sequence learning, it has been applied in many fields, such as machine translation, energy and environment. However, it is seldom used in hydrological modelling. In this study, a new neural network is developed to forecast flood based on the encoder-decoder architecture. There are two deep learning methods, including the Long Short-Term Memory (LSTM) network and Temporal Convolutional Network (TCN), selected as encoders respectively, while the LSTM was also chosen as the decoder, whose results are compared with those from the standard LSTM without using encoder-decoder architecture.</p><p>These models were trained and tested by using the hourly flood events data from 2009 to 2015 in Jianxi basin, China. The results indicated that the new neural flood forecasting networks based encoder-decoder architectures generally perform better than the standard LSTM, since they have better goodness-of-fit between forecasted and observed flood and produce the promising performance in multi-index assessment. The TCN as an encoder has better model stability and accuracy than LSTM as an encoder, especially in longer forecast periods and larger flood. The study results also show that the encoder-decoder architecture can be used as an effective deep learning solution in flood forecasting.</p><p></p>

2020 ◽  
Vol 22 (3) ◽  
pp. 541-561 ◽  
Author(s):  
Song Pham Van ◽  
Hoang Minh Le ◽  
Dat Vi Thanh ◽  
Thanh Duc Dang ◽  
Ho Huu Loc ◽  
...  

Abstract Rainfall–runoff modelling is complicated due to numerous complex interactions and feedback in the water cycle among precipitation and evapotranspiration processes, and also geophysical characteristics. Consequently, the lack of geophysical characteristics such as soil properties leads to difficulties in developing physical and analytical models when traditional statistical methods cannot simulate rainfall–runoff accurately. Machine learning techniques with data-driven methods, which can capture the nonlinear relationship between prediction and predictors, have been rapidly developed in the last decades and have many applications in the field of water resources. This study attempts to develop a novel 1D convolutional neural network (CNN), a deep learning technique, with a ReLU activation function for rainfall–runoff modelling. The modelling paradigm includes applying two convolutional filters in parallel to separate time series, which allows for the fast processing of data and the exploitation of the correlation structure between the multivariate time series. The developed modelling framework is evaluated with measured data at Chau Doc and Can Tho hydro-meteorological stations in the Vietnamese Mekong Delta. The proposed model results are compared with simulations of long short-term memory (LSTM) and traditional models. Both CNN and LSTM have better performance than the traditional models, and the statistical performance of the CNN model is slightly better than the LSTM results. We demonstrate that the convolutional network is suitable for regression-type problems and can effectively learn dependencies in and between the series without the need for a long historical time series, is a time-efficient and easy to implement alternative to recurrent-type networks and tends to outperform linear and recurrent models.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jinyue Zhang ◽  
Lijun Zi ◽  
Yuexian Hou ◽  
Mingen Wang ◽  
Wenting Jiang ◽  
...  

In order to support smart construction, digital twin has been a well-recognized concept for virtually representing the physical facility. It is equally important to recognize human actions and the movement of construction equipment in virtual construction scenes. Compared to the extensive research on human action recognition (HAR) that can be applied to identify construction workers, research in the field of construction equipment action recognition (CEAR) is very limited, mainly due to the lack of available datasets with videos showing the actions of construction equipment. The contributions of this research are as follows: (1) the development of a comprehensive video dataset of 2,064 clips with five action types for excavators and dump trucks; (2) a new deep learning-based CEAR approach (known as a simplified temporal convolutional network or STCN) that combines a convolutional neural network (CNN) with long short-term memory (LSTM, an artificial recurrent neural network), where CNN is used to extract image features and LSTM is used to extract temporal features from video frame sequences; and (3) the comparison between this proposed new approach and a similar CEAR method and two of the best-performing HAR approaches, namely, three-dimensional (3D) convolutional networks (ConvNets) and two-stream ConvNets, to evaluate the performance of STCN and investigate the possibility of directly transferring HAR approaches to the field of CEAR.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Kate Highnam ◽  
Domenic Puzio ◽  
Song Luo ◽  
Nicholas R. Jennings

AbstractBotnets and malware continue to avoid detection by static rule engines when using domain generation algorithms (DGAs) for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To combat this, we created a novel hybrid neural network, Bilbo the “bagging” model, that analyses domains and scores the likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique architecture is found to be the most consistent in performance in terms of AUC, $$F_1$$ F 1 score, and accuracy when generalising across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring real-world network logs within a large enterprise. In 4 h of actual network traffic, the model discovered at least five potential command-and-control networks that commercial vendor tools did not flag.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4456
Author(s):  
Sungjae Ha ◽  
Dongwoo Lee ◽  
Hoijun Kim ◽  
Soonchul Kwon ◽  
EungJo Kim ◽  
...  

The efficiency of the metal detection method using deep learning with data obtained from multiple magnetic impedance (MI) sensors was investigated. The MI sensor is a passive sensor that detects metal objects and magnetic field changes. However, when detecting a metal object, the amount of change in the magnetic field caused by the metal is small and unstable with noise. Consequently, there is a limit to the detectable distance. To effectively detect and analyze this distance, a method using deep learning was applied. The detection performances of a convolutional neural network (CNN) and a recurrent neural network (RNN) were compared from the data extracted from a self-impedance sensor. The RNN model showed better performance than the CNN model. However, in the shallow stage, the CNN model was superior compared to the RNN model. The performance of a deep-learning-based (DLB) metal detection network using multiple MI sensors was compared and analyzed. The network was detected using long short-term memory and CNN. The performance was compared according to the number of layers and the size of the metal sheet. The results are expected to contribute to sensor-based DLB detection technology.


Author(s):  
Sophia Bano ◽  
Francisco Vasconcelos ◽  
Emmanuel Vander Poorten ◽  
Tom Vercauteren ◽  
Sebastien Ourselin ◽  
...  

Abstract Purpose Fetoscopic laser photocoagulation is a minimally invasive surgery for the treatment of twin-to-twin transfusion syndrome (TTTS). By using a lens/fibre-optic scope, inserted into the amniotic cavity, the abnormal placental vascular anastomoses are identified and ablated to regulate blood flow to both fetuses. Limited field-of-view, occlusions due to fetus presence and low visibility make it difficult to identify all vascular anastomoses. Automatic computer-assisted techniques may provide better understanding of the anatomical structure during surgery for risk-free laser photocoagulation and may facilitate in improving mosaics from fetoscopic videos. Methods We propose FetNet, a combined convolutional neural network (CNN) and long short-term memory (LSTM) recurrent neural network architecture for the spatio-temporal identification of fetoscopic events. We adapt an existing CNN architecture for spatial feature extraction and integrated it with the LSTM network for end-to-end spatio-temporal inference. We introduce differential learning rates during the model training to effectively utilising the pre-trained CNN weights. This may support computer-assisted interventions (CAI) during fetoscopic laser photocoagulation. Results We perform quantitative evaluation of our method using 7 in vivo fetoscopic videos captured from different human TTTS cases. The total duration of these videos was 5551 s (138,780 frames). To test the robustness of the proposed approach, we perform 7-fold cross-validation where each video is treated as a hold-out or test set and training is performed using the remaining videos. Conclusion FetNet achieved superior performance compared to the existing CNN-based methods and provided improved inference because of the spatio-temporal information modelling. Online testing of FetNet, using a Tesla V100-DGXS-32GB GPU, achieved a frame rate of 114 fps. These results show that our method could potentially provide a real-time solution for CAI and automating occlusion and photocoagulation identification during fetoscopic procedures.


Sign in / Sign up

Export Citation Format

Share Document