Changes in hydroclimate during last deglaciation lake-level fall in the Dead Sea sediment record

Author(s):  
Markus J. Schwab ◽  
Daniela Müller ◽  
Ina Neugebauer ◽  
Rik Tjallingii ◽  
Yoav Ben Dor ◽  
...  

<p>The drainage basin of the Dead Sea is the largest hydrological system in the Levant and spans across the boundary between the sub-humid to semi-arid Mediterranean and the arid to hyper-arid Saharo-Arabian climate zones. As a terminal lake, precipitation changes due to climatic variations result in extensive fluctuations of lake level and sediment deposition.</p><p>A unique sediment record from the deepest part of the Dead Sea Basin was obtained as part of the ICDP Dead Sea Deep Drilling Project. Here we analyze the partially annually laminated sediments of Core 5017-1-A between 88.5-99.2 m core depth, which comprise the period between ~16.5 and ~11 ka and document a lake level drop of ca 160 m. In the sediments of Core 5017-1-A, this marks the transition from MIS2 aad (alternating aragonite and detritus) sediments to MIS1 halite deposits and ld (laminated detrital marl) sediments, coinciding with increased drying in the Dead Sea watershed.</p><p>Microfacies analyses show the occurrence of several lithological facies that accumulated during MIS2: aad, gd (massive gypsum deposit within marl), native sulfur concretions (associated with greenish colored aad), mtd (mass-transport deposits, typically graded) and homogenites consisting of clay and silt. Further, flood layers have been identified, potentially indicating rainstorms associated with specific eastern Mediterranean synoptic systems. To complement the microfacies analyses, XRF scanning provides continuous Ti/Ca and S/Ca records to reconstruct relative detrital input and gypsum occurrence, respectively. Additionally, to study potential early signs of hydroclimatic change, the deep lake sediments are correlated to the Lisan Formation of the marginal Masada outcrop using distinct gypsum marker layers, indicative of pronounced lake level drops. However, due to a significant lake level decline, the Masada outcrop sediments terminate at around 14.5 ka and the subsequent lake level lowering is solely recorded in the deep lake sediments.</p><p>This study was funded by the German Science Foundation (DFG Grant BR 2208/13-1/-2). Further, it is a contribution to the Helmholtz Association (HFG) climate initiative REKLIM Topic 8 “Abrupt climate change derived from proxy data”.</p>

2020 ◽  
Author(s):  
Cecile Blanchet ◽  
Hana Jurikova ◽  
Julia Fusco ◽  
Rik Tjallingii ◽  
Markus Schwab ◽  
...  

<p>Sedimentary records from the Dead Sea constitute unique paleoclimatic archives that enable investigating the response of environments to climatic changes. Large lake-level fluctuations (>100 m) occurred during the past glacial-interglacial cycles due to reorganizations of the hydroclimatic regime and drastically modified the morphology of the drainage area. We aim here to reconstruct past sedimentary dynamics at times of varying lake level to gain insights into paleoclimate and landscape evolution.</p><p>For this study, we have compared present-day surface sediments (fluvial and soil sediments) retrieved on both the eastern Jordanian and western shores of the present Dead Sea with downcore sediment archives including the ICDP Dead Sea Deep Drilling Program Site 5017-1. Streams originating from various parts of the watershed can be distinguished by their grain-size distribution, with northern and south-western streams having generally finer grain-size modes when compared with streams from the eastern side. We find that all modes identified in the fluvial sediments were present in the ICDP downcore samples from the last deglaciation, when lake levels were up to 250m higher than today. This suggests that the whole watershed contributed to the sediment input at that time. In contrast, Holocene sediments from the deep core and shore deposits are enriched in fluvial particles showing similar grain-size modes as the northern and south-western streams. This suggests that these regions were prime sediment sources during lower lake-level stands. An additional mode, tentatively related to aeolian particles, was also identified in the Holocene samples, pointing to the remobilization of deposited dust in the watershed or to a more arid regional climate.</p><p>Our results provide a first synoptic view on sedimentary dynamics in the Dead Sea watershed and help to relate sediment provenance to the drainage morphology and paleo-hydrological regimes. They constitute a solid basis for further assessment of sedimentary provenance using geochemical indicators.</p>


2020 ◽  
Author(s):  
Nicolas Waldmann ◽  
Yin Lu ◽  
Revital Bookman ◽  
Shmulik Marco

<p>Recording and analyzing how climate change impacts flood recurrence, basin erosion, and sedimentation can improve our understanding of these systems. The aragonite-detritus laminae couplets comprising the lacustrine formations that were deposited in the Dead Sea Basin are considered as faithful monitors of the freshwater supply to the lakes. We count a total of ~5600 laminae couplets deposited in the last 45 kyr (MIS3-MIS1) at the Dead Sea depocenter, which encompass the upper 141.6 m of the ICDP Core 5017-1. The present study shows that aragonite and detritus laminae are thinner and occur at high frequency during MIS 3-2, while they are much thicker and less frequent during MIS 1. By analyzing multiple climate-connected factors, we propose that significant lake-level drops, enhanced dust input, and low vegetative cover in the drainage basin during the last deglaciation (22-11.6 ka) have considerably increased erodible materials in the Dead Sea watershed. We find a decoupling existed between the significant lake-level drop/lake size reduction and lamina thickness change during the last deglaciation. We argue that during the last glacial and the Holocene, the variation of lamina thickness at the multiple-millennium scale was not controlled directly by the lake-level/size change. We interpret this decoupling implying the transport capacity of flash-floods is low and might be saturated by the oversupply of erodible materials, and indicating a transport-limited regime during the time period. We suggest that the observed thickness and frequency distribution of aragonite-detritus laminae points to the high frequency of small-magnitude floods during the last glacial period, in contrast to low frequency, but large-magnitude floods during the Holocene.</p>


2020 ◽  
Author(s):  
Shahrazad Abu Ghazleh ◽  
Stephan Kempe

<p> </p><p>Calcareous stromatolite crusts overgrowing beach gravels and stabilising piles of rocks were observed on shoreline terraces of Lake Lisan along the eastern coast of the Dead Sea. The stromatolite crusts are thick, massive and hard, with a dark-grey or white-grey finely-laminated structure, indicating that they are mostly calcareous organic build-up of cyanobacterial origin. Samples from these stromatolites have been analyzed using Stable Isotopes (δ13C & δ18O), AAS and XRD analysis. The samples range in altitude between -350 m and -19 m, representing the time interval of Lake Lisan (~ 80-19 ka BP) according to our U/Th dating. Since stromatolites grow in shallow water, they are very sensitive to minor shifts in rainfall and evaporation and therefore an excellent tool to track small changes in hydrology, in climate and in paleoenvironmental conditions of the lake basin.</p><p> </p><p>Oxygen and carbon isotopic compositions of these stromatolites show a linear covariant trend with a strong positive correlation (r = 0.8) and large ranges of 7.85 and 6.78‰, respectively. This trend is most typical of primary carbonates formed in closed lakes. Isotopes analyses show low negative values of stromatolites from the lake highest stands at -76 m to -19 m, reflecting fresh water conditions of the lake basin at the last interglacial-glacial boundary (80-76 ka BP). The lowest values were derived from stromatolites at -103 to -119 m associated with the transgression of the lake to these high stands between 55 and 33 ka BP. The heaviest values were derived from stromatolites at -137 to -160 m indicating a change to dry climatic conditions in the Eastern Mediterranean that caused a subsequent drop of the lake level during MIS 2 (31-19 ka BP).</p><p> </p><p>The Mg/Ca ratio and the XRD analysis of the stromatolites correlate also with transgression-regression phases of the lake. Dominance of calcite in stromatolites at -76 to 0 m and inferred low Mg/Ca ratios of the lake water (i.e. ~2) imply a high fresh water input of the lake during the   highest stands period. A high Mg/Ca ratio of the lake water of >7 inferred from low-level stromatolite at -350 m and the existence of aragonite as the sole mineral reflect low fresh water input and high evaporation rates that caused a lake level regression during H6, ~ 60 ka BP.</p><p> </p><p>Inferred low Mg/Ca ratios of stromatolites at -247 to -101 m and the existence of calcite as a main mineral phase indicate wet climatic conditions of the eastern Mediterranean and lake level transgression to higher than -137 during MIS 3. The appearance of more aragonite in stromatolites at -137 to -154 m and the inferred high Mg/Ca ratio of the lake water points to a return to dry climatic conditions that caused a regression of Lake Lisan between 32 to 22 ka BP (MIS 2). However, the change in the mineral composition to pure calcite at -160 m in addition to the inferred low Mg/Ca ratio correlates well with the transgression of the lake to this level by the end of the LGM.</p><p> </p><p> </p>


2017 ◽  
Vol 464 ◽  
pp. 211-226 ◽  
Author(s):  
Yael Kiro ◽  
Steven L. Goldstein ◽  
Javier Garcia-Veigas ◽  
Elan Levy ◽  
Yochanan Kushnir ◽  
...  

2003 ◽  
Vol 60 (3) ◽  
pp. 263-273 ◽  
Author(s):  
Yehouda Enzel ◽  
Revital Bookman (Ken Tor) ◽  
David Sharon ◽  
Haim Gvirtzman ◽  
Uri Dayan ◽  
...  

AbstractThe Dead Sea is a terminal lake of one of the largest hydrological systems in the Levant and may thus be viewed as a large rain gauge for the region. Variations of its level are indicative of the climate variations in the region. Here, we present the decadal- to centennial-resolution Holocene lake-level curve of the Dead Sea. Then we determine the regional hydroclimatology that affected level variations. To achieve this goal we compare modern natural lake-level variations and instrumental rainfall records and quantify the hydrology relative to lake-level rise, fall, or stability. To quantify that relationship under natural conditions, rainfall data pre-dating the artificial Dead Sea level drop since the 1960s are used. In this respect, Jerusalem station offers the longest uninterrupted pre-1960s rainfall record and Jerusalem rains serve as an adequate proxy for the Dead Sea headwaters rainfall. Principal component analysis indicates that temporal variations of annual precipitation in all stations in Israel north of the current 200 mm yr−1 average isohyet during 1940–1990 are largely synchronous and in phase (∼70% of the total variance explained by PC1). This station also represents well northern Jordan and the area all the way to Beirut, Lebanon, especially during extreme drought and wet spells. We (a) determine the modern, and propose the past regional hydrology and Eastern Mediterranean (EM) climatology that affected the severity and length of droughts/wet spells associated with multiyear episodes of Dead Sea level falls/rises and (b) determine that EM cyclone tracks were different in average number and latitude in wet and dry years in Jerusalem. The mean composite sea level pressure and 500-mb height anomalies indicate that the potential causes for wet and dry episodes span the entire EM and are rooted in the larger-scale northern hemisphere atmospheric circulation. We also identified remarkably close association (within radiocarbon resolution) between climatic changes in the Levant, reflected by level changes, and culture shifts in this region.


Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 29 ◽  
Author(s):  
Yochanan Kushnir ◽  
Mordechai Stein

This paper examines the hydroclimate history of the Eastern Mediterranean (EM) region during the 10th to 14th centuries C.E., a period known as the Medieval Climate Anomaly (MCA), a time of significant historical turmoil and change in the region. The study assembles several regional hydroclimatic archives, primarily the Dead Sea reconstructed lake level curve together with the recently extracted deep-lake sediment record, the Soreq Cave speleothem record and its counterpart, the EM marine sediment record and the Cairo Nilometer record of annual maximum summer flood levels in lower Egypt. The Dead Sea record is a primary indicator of the intensity of the EM cold-season storm activity while the Nilometer reflects the intensity of the late summer monsoon rains over Ethiopia. These two climate systems control the annual rainfall amounts and water availability in the two regional breadbaskets of old, in Mesopotamia and Egypt. The paleoclimate archives portray a variable MCA in both the Levant and the Ethiopian Highlands with an overall dry, early-medieval climate that turned wetter in the 12th century C.E. However, the paleoclimatic records are markedly punctuated by episodes of extreme aridity. In particular, the Dead Sea displays extreme low lake levels and significant salt deposits starting as early as the 9th century C.E. and ending in the late 11th century. The Nile summer flood levels were particularly low during the 10th and 11th centuries, as is also recorded in a large number of historical chronicles that described a large cluster of droughts that led to dire human strife associated with famine, pestilence and conflict. During that time droughts and cold spells also affected the northeastern Middle East, in Persia and Mesopotamia. Seeking an explanation for the pronounced aridity and human consequences across the entire EM, we note that the 10th–11th century events coincide with the medieval Oort Grand Solar Minimum, which came at the height of an interval of relatively high solar irradiance. Bringing together other tropical and Northern Hemisphere paleoclimatic evidence, we argue for the role of long-term variations in solar irradiance in shaping the early MCA in the EM and highlight their relevance to the present and near-term future.


2006 ◽  
Vol 66 (3) ◽  
pp. 421-431 ◽  
Author(s):  
Claudia Migowski ◽  
Mordechai Stein ◽  
Sushma Prasad ◽  
Jörg F.W. Negendank ◽  
Amotz Agnon

AbstractA comprehensive record of lake level changes in the Dead Sea has been reconstructed using multiple, well dated sediment cores recovered from the Dead Sea shore. Interpreting the lake level changes as monitors of precipitation in the Dead Sea drainage area and the regional eastern Mediterranean palaeoclimate, we document the presence of two major wet phases (∼ 10–8.6 and ∼ 5.6–3.5 cal kyr BP) and multiple abrupt arid events during the Holocene. The arid events in the Holocene Dead Sea appear to coincide with major breaks in the Near East cultural evolution (at ∼ 8.6, 8.2, 4.2, 3.5 cal kyr BP). Wetter periods are marked by the enlargement of smaller settlements and growth of farming communities in desert regions, suggesting a parallelism between climate and Near East cultural development.


2020 ◽  
Author(s):  
Hannah Hartung ◽  
Jane M. Reed ◽  
Thomas Litt

<p>The Eastern Mediterranean, and the southern Levant in particular, is a key region for palaeoclimatological and palaeoenvironmental research due to its highly complex topography and climatic variability. Our understanding of environmental variability and its possible drivers, and the interaction with migration processes of modern <em>Homo sapiens</em> from a source area in Africa to Europe, is still limited. This is partly because continuous sediment records of sufficient age are rare across the Mediterranean Basin. The deposits of the Dead Sea represent an ideal archive to investigate palaeoenvironmental conditions during human migration phases in the Last Glacial period (MIS 4-2). </p><p>Diatoms (single-celled siliceous algae, Bacillariophyceae) have well-recognised potential to generate high-quality palaeolimnological data, especially in closed-basin saline lakes, but they remain one of the least-exploited proxies in Eastern Mediterranean palaeoclimate research. Here, we present preliminary results of a low-resolution diatom study derived from analysis of sediment deposits of Lake Lisan, the last glacial precursor of the Dead Sea. Sediment cores were recovered during an ICDP campaign in 2010/2011 from the centre of the modern Dead Sea. 18 sediment samples were analysed to investigate (a) the preservation of diatom valves in various evaporitic deposits (b) possible shifts in diatom species composition of Lake Lisan during the Last Glacial period, and (c) if diatoms can be used as proxy indicator for lake-level and, thus, palaeoclimate reconstruction. We focus on a prominent lake-level high stand of Lake Lisan at around 28-22 ka BP, which resulted in the merging Lake Lisan and freshwater Lake Kinneret.</p><p>First results show that the diatom preservation is exceptionally good in evaporitic deposits of the sediment cores from Lake Lisan, which is contradictory to the available literature. In contrast to Holocene deposits from the Dead Sea, diatoms are abundant in all analysed samples from laminated deposits from Lake Lisan: the diatom flora is dominated by halophilous benthic diatoms, such as <em>Amphora</em> spp., <em>Halamphora</em> spp. and <em>Nitzschia</em> spp. In phases of lake-level high stands of Lake Lisan, the diatom flora shifts towards a more plankton-dominated freshwater flora containing <em>Aulacoseira</em> spp. and taxa from the <em>Cyclotella-ocellata-</em>species complex.</p>


2021 ◽  
Author(s):  
Camille Thomas ◽  
Hendrik Vogel ◽  
Daniel Ariztegui

<p>Lake sediments bear valuable information allowing multidisciplinary research to address paleoclimatic and paleoenvironmental reconstructions at regional to global scales. Sedimentological, geochemical, paleontological and biological tools are commonly used to tackle these questions, which are generally driven by a set of intricated parameters. Among them, the importance of biogeochemical cycling is largely acknowledged in the lake (paleo-) water columns and has been at the heart of most paleolimnological studies. The way these signals are transferred to lake sediments has largely been studied. However, microbial communities - the principal actors in the biogeochemical cycling framework - keep being active in the sediment, and continue to influence the preservation and retention of organic and inorganic matter while buried. Gathered within the “early diagenesis” black box, these processes, once qualified, can help better interpret the proxies they may influence, and even constitute new ones. Within this work, we provide examples showing that the integration of studies of the subsurface biosphere within geo- and paleo-limnology investigations can help unlock or secure the potential of multiproxy analysis for reconstructing the paleoenvironments, paleoclimates and paleo-ecology of lake basins. The use of now well-developed OMICS methods, through the analysis of environmental and/or ancient DNA and lipids in particular has been coupled to mineralogical, isotopic and magnetic information in the Dead Sea (Levant) to demonstrate the differential preservation of mineralogic and sedimentologic signals along the last two glacial-interglacial cycles (Thomas et al., 2015, 2016; Ebert et al., 2018). Similar signals have been unlocked in Lake Towuti (Indonesia) and in Laguna Potrok Aike (Argentina) (Vuillemin et al., 2015, 2017). In Lake Ohrid (North Macedonia/Albania), environmental DNA has provided limited inputs on that perspective (Thomas et al., 2020), but has shown that ancient/fossil DNA could provide valuable information regarding the lake primary productivity and the status of its watershed land-cover. Integrating OMICS methods to tackle the identity and activity of the ancient and modern subsurface biosphere of lakes therefore holds an immense potential not only for microbiology investigations, but also for paleoclimatic and paleoenvironmental reconstructions.</p><p>Ebert et al. (2018) Overwriting of sedimentary magnetism by bacterially mediated mineral alteration. Geology <strong>46</strong>, 2–5.</p><p>Thomas et al. (2016) Microbial sedimentary imprint on the deep Dead Sea sediment. The Depositional Record 1–21.</p><p>Thomas et al. (2020) Weak influence of paleoenvironmental conditions on the subsurface biosphere of lake ohrid over the last 515 ka. Microorganisms <strong>8</strong>, 1–20.</p><p>Thomas et al. (2015) Impact of paleoclimate on the distribution of microbial communities in the subsurface sediment of the Dead Sea. Geobiology <strong>13</strong>, 546–561.</p><p>Vuillemin et al. (2015) Recording of climate and diagenesis through fossil pigments and sedimentary DNA at Laguna Potrok Aike, Argentina. Biogeosciences Discussions <strong>12</strong>, 18345–18388.</p><p>Vuillemin et al. (2017) Preservation and Significance of Extracellular DNA in Ferruginous Sediments from Lake Towuti , Indonesia. Frontiers in Microbiology <strong>8</strong>, 1–15.</p>


Sign in / Sign up

Export Citation Format

Share Document