Spatio-temporal cluster analyses of landslides in Italy at national and regional scale

Author(s):  
Marj Tonini ◽  
Kim Romailler ◽  
Gaetano Pecoraro ◽  
Michele Calvello

<p><strong>Keywords:</strong> Landslides, FraneItalia, cluster analysis, spatio-temporal point process</p><p>In Italy landslides pose a significant and widespread risk, resulting in a large number of casualties and huge economic losses. Landslide inventories are critical to support investigations of where and when landslides have happened and may occur in the future, i.e. to establish reliable correlations between triggering factors and landslide occurrences. To deal with this issue, statistical methods originally developed for spatio-temporal stochastic point processes can be useful for identifying correlations between events in space and time and detecting a significant excess of cases within large landslide datasets.</p><p>In the present study, the authors propose an approach to analyze and visualize spatio-temporal clusters of landslides occurred in Italy in the period 2010-2017, considering the weather warning zones as territorial units. Besides, a regional analysis was conducted in Campania region considering the municipalities as territorial units. Data on landslide occurrences derived from the FraneItalia catalog, an inventory retrieved from online Italian news. The database contains 8931 landslides, grouped in 4231 single events and 938 areal events (records referring to multiple landslides triggered by the same cause in the same geographic area). Analyses were performed both annually, considering each year individually, and globally, considering the entire frame period. We applied the spatio-temporal scan statistics permutation model (STPSS, integrated in SaTScan<sup>TM</sup> software), which allowed detecting clusters’ location and estimating their statistical significance. STPSS is based on cylindrical moving windows which scan the area across the space and in time counting the number of observed and expected occurrences and computing the likelihood ratio. The statistical inference (p-value) is evaluated by Monte Carlo sampling and finally the most likely clusters in the real and randomly generated datasets are compared.</p><p>Although more detailed analyses are required for the determination of cause-effect relationships among landslides and other variables, some relations with the local topographic and meteorological conditions can already be argued. At national scale, spatio-temporal clusters of landslides are mainly recurrent in two zones: the area enclosing Liguria Region – Northern Tuscany at north-west and the area between Abruzzo and Molise regions at centre-east. During the year, landslide clusters are particularly abundant between October and March. as most of the events in the FraneItalia catalog are rainfall-induced, strongly influenced by seasonal rainfall patterns. Concerning the regional analysis, most of the clusters are located in the Lattari mountains, the Pizzo d’Alvano massif and the Picentini mountains, areas highly susceptible to landslide occurrence due to geomorphological factors.</p><p>In conclusion, the application of spatio-temporal cluster analysis at various scale allowed the identification of frame periods with greater landslide activity. The question of whether this increase in activity depends climate conditions or topographic factors is still open and request further investigations.</p><p>REFERENCES</p><p>Calvello, M., Pecoraro, G. FraneItalia: a catalog of recent Italian landslides. <em>Geoenvironmental Disasters</em>. 5: 13 (2018)</p><p>Tonini, M. & Cama, M. Spatio-temporal pattern distribution of landslides causing damage in Switzerland. <em>Landslides</em> 16 (2019)</p>

2020 ◽  
Vol 4 ◽  
pp. 100034
Author(s):  
R.W. Amin ◽  
S. Kocak ◽  
H.E. Sevil ◽  
G.P. Peterson ◽  
J.T. Hamilton ◽  
...  

2022 ◽  
Author(s):  
KALEAB TESFAYE TEGEGNE ◽  
ELENI TESFAYE TEGEGNE ◽  
MEKIBIB KASSA TESSEMA ◽  
GELETA ABERA ◽  
BERHANU BIFATO ◽  
...  

Abstract Background: As of the 31st of January 2021, there had been 102,399,513 confirmed cases of COVID-19 worldwide, with 2,217,005 deaths reported to WHOThe goal of this study is to uncover the spatiotemporal patterns of COVID 19 in Ethiopia, which will aid in the planning and implementation of essential preventative measures. Methods We obtained data on COVID 19 cases reported in Ethiopia from November 23 to December 29, 2021, from an Ethiopian health data website that is open to the public.Kulldorff's retrospective space-time scan statistics were utilized to detect the temporal, geographical, and spatiotemporal clusters of COVID 19 at the county level in Ethiopia, using the discrete Poisson probability model. Results: In Ethiopia, between November 23 and December 29, 2021, a total of 22,199 COVID 19 cases were reported.The COVID 19 cases in Ethiopia were strongly clustered in spatial, temporal, and spatiotemporal distribution, according to the results of Kulldorff's scan. statisticsThe most likely Spatio-temporal cluster (LLR = 70369.783209, RR = 412.48, P 0.001) was mostly concentrated in Addis Ababa and clustered between 2021/11/1 and 2021/11/30.Conclusion: From November 23 to December 29, 2021, this study found three large COVID 19 space-time clusters in Ethiopia, which could aid in future resource allocation in high-risk locations for COVID 19 management and prevention.


2021 ◽  
Author(s):  
Anca Opris ◽  
Sumanta Kundu ◽  
Takahiro Hatano

<div>More than 15 years of seismic observations on slow earthquakes are available for the Nankai and Cascadia regions, due to the high density of seismic stations and constant improvements. It was observed that deep tremor activity exhibits highly non-Poissonian behaviour, consisting of short-period bursts separated by long periods of inactivity, as well as significant spatial variations throughout a tectonic region (Obara, 2011). Tremor activity in these regions has shown episodic behaviour with different recurrence interval. Modelling the space-time variations can help the unified understanding of the phenomenon. Catalogues with more than 30.000 (Idehara et al., 2014) and 130000 LFE’s (Mizuno et al, 2019) are available for the world tremor databese. If we consider LFE’s source as a spatial correlation structure which is evolving in time, in order to reveal the characteristics of this structure, we used the Grassberger Procaccia algorithm to calculate the combined correlation dimension (Tosi et al.,2008) of tremor activity (Cc (r, τ)), at both local and regional scale. The integral representation is shown as contour map (facilitating the possibility of using machine learning algorithms based on image processing for identifying the characteristic image of each tremor patch). Thus, implementing machine learning methods for LFE cluster analysis is required. After performing the cluster analysis, we could identify the specific spatio-temporal behaviour of each of the tremor patches in the studied regions, not just the features which were described in previous studies, such as recurrence intervals for short-term slow slip events (Idehara et al., 2014), tremor migration (for monitoring purposes), but also new features which could be used for forecasting.</div><div> </div><div><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.0b8b5af57a0068928921161/sdaolpUECMynit/12UGE&app=m&a=0&c=4087202a58071c68d39e6d5f305ba0b4&ct=x&pn=gepj.elif&d=1" alt=""></div>


2009 ◽  
Vol 137 (12) ◽  
pp. 1766-1775 ◽  
Author(s):  
W. WU ◽  
J.-Q. GUO ◽  
Z.-H. YIN ◽  
P. WANG ◽  
B.-S. ZHOU

SUMMARYWe obtained a list of all reported cases of haemorrhagic fever with renal syndrome (HFRS) in Shenyang, China, during 1990–2003, and used GIS-based scan statistics to determine the distribution of HFRS cases and to identify key areas and periods for future risk-factor research. Spatial cluster analysis suggested three areas were at increased risk for HFRS. Temporal cluster analysis suggested one period was at increased risk for HFRS. Space–time cluster analysis suggested six areas from 1995 to 1996 and four areas from 1998 to 2003 were at increased risk for HFRS. We also discussed the likely reasons for these clusters. We conclude that GIS-based scan statistics may provide an opportunity to classify the epidemic situation of HFRS, and we can pursue future investigations to study the likely factors responsible for the increased disease risk based on the classification.


2021 ◽  
Author(s):  
Zhijuan Song ◽  
Xiaocan Jia ◽  
Junzhe Bao ◽  
Yongli Yang ◽  
Huili Zhu ◽  
...  

Abstract Introduction: About 8% of Americans get influenza during an average season from the Centers for Disease Control and Prevention in the United States. It is necessary to strengthen the early warning of influenza and the prediction of public health. Methods In this study, we analyzed the characteristics of Influenza-like Illness (ILI) by Geographic Information System and SARIMA model, respectively. Spatio-temporal cluster analysis detected 23 clusters of ILI during the study period. Results The highest incidence of ILI was mainly concentrated in the states of Louisiana, District of Columbia and Virginia. The Local spatial autocorrelation analysis revealed the High-High cluster was mainly located in Louisiana and Mississippi. This means that if the influenza incidence is high in Louisiana and Mississippi, the neighboring states will also have higher influenza incidence rates. The regression model SARIMA(1, 0, 0)(1, 1, 0)52 with statistical significance was obtained to forecast the ILI incidence of Mississippi. Conclusions The study showed, the ILI incidence will begin to increase in the 45th week 2020 and peak in the 6th week 2021. To conclude, notable epidemiological differences were observed across states, indicating that some states should pay more attention to prevent and control respiratory infectious diseases.


2020 ◽  
Vol 6 (3) ◽  
pp. 235-244
Author(s):  
Ali Salem Eddenjal

Aims: To understand the links between climate variability and hydrology in western Libya. Background: This study represents the first comprehensive assessment of rainfall variability in western Libya at a regional scale. Objective: To assess temporal and spatial variability of rainfall in western Libya, based on data (1979-2009) from 16 rain gauges. Methods: The non-parametric Mann-Kendall method and Sen’s slop estimator were used to define changes in rainfall series and their statistical significance. Results: Coastal and mountainous time series showed decreasing trends at the annual, autumn, and spring scales, with very few exceptions. Notably, winter showed increasing trends, with the significant values of 1.94 and 0.88 mm/year at Sirt and Nalut, respectively. Desert stations showed increasing trends, especially at the annual scale, with the greatest significant increase on the order of 1.19 mm/year in Ghadames. For the regional rainfall trend analysis, annual, spring and autumn rainfalls decreased in the coastal and mountainous zones, with the highest significant decrease of 1.94 mm/year. Again, winter rainfall showed increasing trend over the whole study domain. Conclusion: Although most time series showed a tendency towards more drier conditions, most of the detected trends were statistically non-significant. This study will provide guidance for policy makers in their future planning to mitigate the impact of drought.


Sign in / Sign up

Export Citation Format

Share Document