Sedimentary Cyclicity in the Upper Paleocene- Eocene Successions of the Haymana Basin (Ankara, Turkey): Responses of Fossils to Cyclicity

Author(s):  
Nilya Bengül

<p>The Haymana Basin in central Anatolia (Turkey) formed during the closure of the Neo-Tethys on Late Cretaceous to Middle Eocene as a forearc accretionary wedge. Late Paleocene to Middle Eocene aged units in this basin are exposed near Çayraz Village, Haymana. The Çayraz Formation is the youngest unit of the Haymana Basin, and it is represented by packages of nummulitic banks, and the intercalation of calcareous mudstones. The aim of this study is to investigate the sedimentary cyclicity and depositional sequences in the Upper Paleocene- Eocene successions of the Haymana Basin. To be able to achieve this objective, a stratigraphic section has been measured through this succession. In this study, detailed microfacies analyses of the shallow-water carbonate successions indicate a ramp type depositional model of the carbonate rocks. The facies composed of Alveolina sp., Orbitolites sp., and  Miliolids that indicate low energy depositional environment . After that depositional environment to  the shoal; the facies composed of Nummulites spp., Assilina spp. occur and increase their abundance towards high-energy environments. Absence of the Alveolina sp., Orbitolites sp., and Miliolids. occur in accordance with that. The facies composed of Nummulites spp., Assilina spp. become associated with Discocyclina sp. towards to open sea on the ramp, and the shallow open marine part is represented by the shale with the association of planktonic foraminifera. Lateral relationships of the facies from proximal (inner ramp) to the distal (mid ramp) part of the ramp are investigated by using the knowledge of paleoecology preferences of the fossils, lithologic data of the rocks and biological aspects of the fossils.  The fossil associations and their indicator environments can be used in vertical changes of the facies as in the lateral relationships of the facies. It has potential to derive cyclic relationships of the stratigraphic sequence. Therefore, based on the detailed microfacies analysis and change in the distribution of the fossil associations in the stacking pattern of the sequence, a composite depositional model has been suggested. At this part of the research newly acquired question is that the driven factor of these cyclic relationships of the sequence, whether it occurred by the control of the eustatic sea- level or the interplay between tectonics and the eustacy as the dominating factor in the sequence formation.</p><p> </p><p>Keywords: Large Benthic Foraminifera, Nummulites spp., Assilina spp., Haymana Basin, Çayraz Formation</p>

Lithos ◽  
2021 ◽  
Vol 388-389 ◽  
pp. 106060
Author(s):  
Bhupati Neupane ◽  
Junmeng Zhao ◽  
Babu Ram Gyawali ◽  
Yan Deng ◽  
Bishal Maharjan ◽  
...  

2016 ◽  
Vol 67 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Aynur Hakyemez ◽  
Nazire Özgen-Erdem ◽  
Özgen Kangal

AbstractPlanktonic and benthic foraminifera are described from the Middle Eocene-Lower Miocene successions in the Sivas Basin, Central Anatolia. An integrated foraminiferal zonation provides new age assignments in terms of a great number of taxa for the studied sections. Four biostratigraphical intervals are first recorded based on the concurrent ranges of sporadically occurring but well preserved planktonic foraminiferal assemblages. The first interval characterized by the co-occurrences ofAcarinina bullbrooki, Truncorotaloides topilensisandTurborotalia cerroazulensisis referable to the E11 Zone of late Lutetian–early Bartonian. An assemblage yieldingParagloborotalia opimaaccompanied byGlobigerinella obesaforms a basis for the late Chattian O5 Zone. The successive interval corresponds to the late Chattian O6 Zone indicated by the presence ofGlobigerina ciperoensisandGlobigerinoides primordiusalong with the absence ofParagloborotalia opima. The early Aquitanian M1 Zone can be tentatively defined based mainly on the assemblage ofGlobigerina, Globigerinella, GloboturborotalitaandTenuitella. The biostratigraphical data obtained from the benthic foraminifera assign the studied sections to the SBZ 21–22, SBZ 23 and SBZ 24 ranging in age from Rupelian to Aquitanian. The SBZ 23 and 24 are well constrained biozones by the occurrences ofMiogypsinella complanataandMiogypsina gunteri, respectively, whereas the SBZ 21–22 defined by nummulitids and lepidocylinids in the Tethyan Shallow Benthic Zonation is characterized dominantly by peneroplids, soritids and miliolids in the studied sections. Benthic foraminiferal assemblages suggest different paleoenvironments covering lagoon, algal reef and shallow open marine whereas planktonic foraminifera provides evidence for relatively deep marine settings on the basis of assemblages characterized by a mixture of small-sized simple and more complex morphogroups indicative for intermediate depths of the water column.


2001 ◽  
Vol 3 (3-4) ◽  
pp. 257-269 ◽  
Author(s):  
Manuel SINTUBIN ◽  
Pieter LAGA ◽  
Noël VANDENBERGHE ◽  
Ilse KENIS ◽  
Michiel DUSAR

During excavation works for the construction of the TGV track along the motorway Brussels-Liège (E40) near the interchange Tienen-Hoegaarden-Jodoigne a number of interesting, but only temporary outcrops were created. These outcrops offered not only the occasion to learn more about the stratigraphy, paleogeography and paleobotany of the Paleogene, but also revealed some particular deformation features. The Outgaarden Section, SE of the interchange, showed chaotically deformed sands at the base of the Upper Paleocene Tienen Formation. The highly viscous deformation features originated in a high-energy depositional environment. Dewatering, mass movements and strong currents caused the syndepositional, probably gravitationally-induced sediment deformation. The Goudberg Section, NW of the interchange, exposed the Overlaar Petrified Forest, of which part of the silicified tree-stumps were recovered to constitute the main feature of the planned GEOPARK HOEGAARDEN. In this section tectonically-induced faulting could be demonstrated. The fault shows a clear normal displacement. A sinistral strike-slip displacement is moreover supposed. Faulting occurred prior to the deposition of the Pleistocene loam cover but definitively postdates the deposition of the Ypresian clays. It is proposed that this faulting event in the Tertiary sediments may be caused by a reactivation of underlying master faults in the Lower Paleozoic basement of the Brabant Massif.


2012 ◽  
Vol 12 (4) ◽  
pp. 1185-1200 ◽  
Author(s):  
F. Gerardi ◽  
A. Smedile ◽  
C. Pirrotta ◽  
M. S. Barbano ◽  
P. M. De Martini ◽  
...  

Abstract. Analysis of tsunami deposits from the Pantano Morghella area provided geological evidence for two inundations occurred along the south-eastern Ionian coast of Sicily. Pantano Morghella is a large pond characterised by a fine-grained sedimentation indicating a low-energy depositional environment. Two anomalous yellow sandy layers found at different depths indicate the occurrence of high-energy marine inundations. We studied sedimentological and paleontological features of the anomalous deposits as well as their spatial distribution observing the following properties: different facies with respect to the local stratigraphic sequence; erosive bases, rip-up clasts and broken elements testifying violent deposition mechanisms; macro and micro fauna of marine environment; relatively constant thickness throughout most of the depositional zone with thinning at the distal end; large sand sheets that extend inland. These observations, jointly with their infrequency in the sedimentary record and the age indicating a fast deposition, provided strong evidence for tsunami inundations. Correlations between anomalous layers and historical tsunamis are supported by radiocarbon and OSL dating results. The younger deposit is likely due to the 1908 near-source tsunami, whereas the flooding of the oldest event is most likely associated with a far and large source, the Crete 365 AD earthquake.


GeoArabia ◽  
2014 ◽  
Vol 19 (1) ◽  
pp. 117-140 ◽  
Author(s):  
Mohammad Alqudah ◽  
Mohammad Ali Hussein ◽  
Olaf G. Podlaha ◽  
Sander van den Boorn ◽  
Sadat Kolonic ◽  
...  

ABSTRACT Cretaceous and Paleogene marls, rich in total organic carbon, are widespread throughout Jordan and adjoining areas. Based on planktonic foraminifera these oil shales have been assigned a late Campanian–Paleocene age in previous studies. For the current analysis a total of 283 smear slides from five wells in central Jordan have been investigated for calcareous nannofossil biostratigraphy. Findings suggest a much more differentiated age model of the oil shales than previously proposed. The oil shales studied contain abundant calcareous nannofossil taxa of Eocene age along with varying abundances of Maastrichtian and Paleocene taxa. The encountered marker species Rhomboaster cuspis, Tribrachiatus bramlettei, Tribrachiatus orthostylus, Discoaster lodoensis, Coccolithus crassus, Discoaster sublodoensis, Nannotetrina quadrata, Reticulofenestra umbilicus and Chiasmolithus solitus, indicate an Early to Middle Eocene age, while the presence of Maastrichtian and Paleocene forms suggests major reworking. The presence of Cretaceous taxa reflects either subaerial erosive input from the hinterland or submarine reworking of Cretaceous strata within the basin. The highly variable amount of reworked material and associated deposition rates in the basin may represent changes in the tectonic setting during the Eocene. We propose that the high abundances of Cretaceous and Paleocene taxa reflect an increase in accommodation space by active graben flank movements. A dominance of Eocene taxa, on the other hand, indicates either periods of little accommodation space due to graben infill or inversion-type movements of the graben itself. In any case, the youngest Eocene and autochthonous taxa represent shallower or low topography graben phases.


2021 ◽  
Author(s):  
Irfan Sh. Asaad ◽  

Lithostratigraphy and microfacies analysis of the Avanah Formation (Middle Eocene) were studied in the Gomaspan section in the Bina Bawi anticline, northeast of Erbil city, Kurdistan Region, Iraq. The field observations refer that the formation attains 56 m of medium to thick bedded yellow limestone, grey dolomitic limestone and blue marly dolomitic limestone interbedded with thin beds of blue marl and dark grey shale with an interval of sandy limestone in the middle part and thin to medium bedded limestone interbedded with red mudstone. The petrographic study of 29 thin sections of Avanah carbonates revealed that the majority of the matrix is carbonate mud (micrite) with few microspar. The skeletal grains include benthic foraminifera, dasycladacean green algae, ostracods, calcispheres, pelecypods, rare planktonic foraminifera and bryozoa in addition to bioclasts. Non-skeletal grains encompass peloids, oncoids, intraclasts and extraclasts with common monocrystalline quartz. Based on the field observation and petrographic analysis, three different lithostratigraphic units were identified. They are in ascending order: A-Thick bedded dolomitic marly limestone interbedded with shale. B- Bedded dolomitic limestone interbedded with shale and marl. C- Thin to medium bedded limestone interbedded with red mudstone. Depending on detailed microfacies analysis of carbonate rocks, three main microfacies and 12 submicrofacies are recognized. From the sum of all petrographic, facies, textural analyses, it is concluded that Avanah Formation in Gomaspan section, was deposited in shallow marine environment, semi restricted lagoon, in lower and upper parts and open lagoon environment in the middle part interval.


2012 ◽  
Vol 28 (10) ◽  
pp. 55-68 ◽  
Author(s):  
Yong-Mok Lee ◽  
Eun-Kyeong Choi ◽  
Sung-Wook Kim ◽  
Kyu-Hwan Lee ◽  
Yeo-Jin Yoon ◽  
...  

2015 ◽  
Vol 7 (2) ◽  
pp. 1827-1876 ◽  
Author(s):  
J. Escuder-Viruete ◽  
A. Suárez-Rodríguez ◽  
J. Gabites ◽  
A. Pérez-Estaún

Abstract. In northern Hispaniola, the Imbert Formation (Fm) has been interpreted as an orogenic "mélange" originally deposited as trench-fill sediments, an accretionary (subduction) complex formed above a SW-dipping subduction zone, or the sedimentary result of the early oblique collision of the Caribbean plate with the Bahama Platform in the middle Eocene. However, new stratigraphical, structural, geochemical and geochronological data from northern Hispaniola indicate that the Imbert Fm constitutes a coarsening-upward stratigraphic sequence that records the transition of the sedimentation from a pre-collisional forearc to a syn-collisional piggy-back basin. This piggy-back basin was transported on top of the Puerto Plata ophiolitic complex slab and structurally underlying accreted units of the Rio San Juan complex, as it was emplaced onto the North America continental margin units. The Imbert Fm unconformably overlies different structural levels of the Caribbean subduction-accretionary prism, including a supra-subduction zone ophiolite, and consists of three laterally discontinuous units that record the exhumation of the underlying basement. The distal turbiditic lower unit includes the latest volcanic activity of the Caribbean island arc; the more proximal turbiditic intermediate unit is moderately affected by syn-sedimentary faulting; and the upper unit is a (caotic) olistostromic unit, composed of serpentinite-rich polymictic breccias, conglomerates and sandstones, strongly deformed by syn-sedimentary faulting, slumping and sliding processes. The Imbert Fm is followed by subsidence and turbiditic deposition of the overlying El Mamey Group. The 40Ar / 39Ar plagioclase plateau ages obtained in gabbroic rocks from the Puerto Plata ophiolitic complex indicate its exhumation at ∼ 45–40 Ma (lower-to-middle Eocene), contemporaneously to the sedimentation of the overlying Imbert Fm. These cooling ages imply the uplift to the surface and submarine erosion of the complex to be the source of the ophiolitic fragments in the Imbert Fm, during of shortly after the emplacement of the intra-oceanic Caribbean island-arc onto the continental margin.


Author(s):  
Yucel Yilmaz

The island of Cyprus constitutes a fragment of southern Anatolia separated from the mainland by left-oblique transtension in late Cenozoic time. However, a geological framework of offset features of the south-central Anatolia, for comparison of Cyprus with a source region within and west of the southeastern Anatolian suture zone, has not yet been developed. In this paper, I enumerate, describe, and compare a full suite of potentially correlative spatial and temporal elements exposed in both regions. Northern Cyprus and south-central Anatolia have identical tectonostratigraphic units. At the base of both belts, crop out ophiolitic mélange-accretionary complex generated during the northward subduction of the NeoTethyan Oceanic lithosphere from the Late Cretaceous until the end of middle Eocene. The nappes of the Taurus carbonate platform were thrust above this internally chaotic unit during late Eocene. They began to move as a coherent nappe pile from that time onward. An asymmetrical flysch basin was formed in front of this southward moving nappe pile during the early Miocene. The nappes were then thrust over the flysch basin fill and caused its tight folding. Cyprus separated from Anatolia in the Pleistocene-Holocene when, transtensional oblique faults with dip-slip components caused the development of the Adana and Iskenderun basins and the separation of Cyprus from Anatolia.


Sign in / Sign up

Export Citation Format

Share Document