Scandinavian Lithosphere Structure derived from Surface Waves and Ambient Noise

Author(s):  
Alexandra Mauerberger ◽  
Valerie Maupin ◽  
Hamzeh Sadeghisorkhani ◽  
Olafur Gudmundsson ◽  
Frederik Tilmann

<p>The Scandinavian mountain chain runs approximately parallel to the western coast of Norway with topography up to 2500 m. Since this region lacks recent compressional tectonic forces, we can study the geodynamic evolution of crustal and upper mantle structures which were once participating in continental collision and are now deeply eroded. Together with the ScanArray network we use data from previous and permanent projects, in total more >220 stations, for a surface wave tomography of entire Scandinavia using both earthquake and ambient noise data.</p><p>Initially, we performed a beamforming of Rayleigh surface waves which yielded average phase velocities for the study region and several of its sub-regions. However, a remarkable sin(1Θ) phase velocity variation with azimuth is observed in northern Scandinavia and southern Norway/Sweden but not in the central study area. For periods >35 s a 5% deviation between the maximum and minimum velocities was measured for opposite backazimuths of 120° and 300°, respectively. Such a variation is incompatible with azimuthal anisotropy or weak heterogeneity and might be caused by an eastward dipping lithosphere-asthenosphere boundary (LAB), as is implied by the observations of low shallow velocities below southern Norway in previous studies.</p><p>In order to test this hypothesis, we carried out 2D full-waveform modeling of the Rayleigh wave propagation in a model with a steep gradient in the LAB in combination with a pronounced reduction in the shear velocity below the LAB. This setup resulted in faster phase velocities for propagation in the direction of shallowing LAB, and slower ones for propagation in the direction of deepening LAB, consistent with the observation. This effect is probably due to the interference of reflected surface wave energy.</p><p>From this observed azimuthal bias, we demonstrate that an isotropic distribution of earthquakes is vital for the tomography results, otherwise significant velocity artefacts occur.</p><p>Phase velocity maps were derived with the two plane wave method. We merge those ballistic surface wave observations at longer periods with tomographic maps constructed from inter-station phase velocities measured on ambient noise stacks. Finally, we use a 1D transdimensional Bayesian method to invert the merged phase dispersion curves at each grid point for the V<sub>SV</sub> structure. Below the entire mountain belt a crustal root is absent consistent with previous studies. The Lofoten peninsula shows very low crustal and lithospheric V<sub>SV</sub> with a shallowing Moho towards the continental margin. The LAB is deepening from west to east with a sharp step both in the South (120 km depth) and the North (150 km depth). A high-velocity spot above the LAB in the North can be related to a gravity anomaly. The central area shows rather smooth varying structures from west to east. Additionally, we find low-velocity areas below 150 km depth beneath the Paleoproterozoic Baltic Shield in northern Finland. The sharp gradients in the LAB imaged in southern and northern Scandinavia are consistent with our sin(1Θ) phase velocity variation with azimuth whereas the smoother velocity structure in the central study area explains the absence of 1Θ phase velocity variations there.</p>

2020 ◽  
Vol 224 (3) ◽  
pp. 1684-1704
Author(s):  
Alexandra Mauerberger ◽  
Valérie Maupin ◽  
Ólafur Gudmundsson ◽  
Frederik Tilmann

SUMMARY We use the recently deployed ScanArray network of broad-band stations covering most of Norway and Sweden as well as parts of Finland to analyse the propagation of Rayleigh waves in Scandinavia. Applying an array beamforming technique to teleseismic records from ScanArray and permanent stations in the study region, in total 159 stations with a typical station distance of about 70 km, we obtain phase velocities for three subregions, which collectively cover most of Scandinavia (excluding southern Norway). The average phase dispersion curves are similar for all three subregions. They resemble the dispersion previously observed for the South Baltic craton and are about 1 per cent slower than the North Baltic shield phase velocities for periods between 40 and 80 s. However, a remarkable sin(1θ) phase velocity variation with azimuth is observed for periods >35 s with a 5 per cent deviation between the maximum and minimum velocities, more than the overall lateral variation in average velocity. Such a variation, which is incompatible with seismic anisotropy, occurs in northern Scandinavia and southern Norway/Sweden but not in the central study area. The maximum and minimum velocities were measured for backazimuths of 120° and 300°, respectively. These directions are perpendicular to a step in the lithosphere–asthenosphere boundary (LAB) inferred by previous studies in southern Norway/Sweden, suggesting a relation to large lithospheric heterogeneity. In order to test this hypothesis, we carried out 2-D full-waveform modeling of Rayleigh wave propagation in synthetic models which incorporate a steep gradient in the LAB in combination with a pronounced reduction in the shear velocity below the LAB. This setup reproduces the observations qualitatively, and results in higher phase velocities for propagation in the direction of shallowing LAB, and lower ones for propagation in the direction of deepening LAB, probably due to the interference of forward scattered and reflected surface wave energy with the fundamental mode. Therefore, the reduction in lithospheric thickness towards southern Norway in the south, and towards the Atlantic ocean in the north provide a plausible explanation for the observed azimuthal variations.


2021 ◽  
Author(s):  
Yihe Xu ◽  
Sergei Lebedev ◽  
Raffaele Bonadio ◽  
Thomas Meier ◽  
Christopher Bean

<p>High-frequency seismic surface waves sample the top few tens of meters to the top few kilometres of the subsurface. They can be used to determine three-dimensional distributions of shear-wave velocities and to map the depths of discontinuities (interfaces) within the crust. Passive seismic imaging, using ambient noise as the source of signal, can thus be an effective tool of exploration for mineral, geothermal and other resources, provided that sufficient high-frequency signal is available in the ambient noise wavefield and that accurate, high-frequency measurements can be performed on this signal. Ambient noise imaging using the ocean-generated noise at 5-30 s periods is now a standard method, but less signal is available at frequencies high enough for deposit-scale imaging (0.2-30 Hz), and few studies have reported successful measurements in broad frequency bands. Here, we develop a workflow for the measurement of high-frequency, surface-wave phase velocities in very broad frequency ranges. Our workflow comprises (1) a new noise cross-correlation procedure that accounts for the non-stationary properties of the high frequency noise sources, removes bandpass filtering, replaces temporal normalization with short time window stacking, and drops the explicit spectral normalization by adopting cross-coherence; (2) a new phase-velocity measurement method that extends the bandwidth of reliable measurements by exploiting the (resolved) 2π ambiguity of phase-velocity measurements; (3) interstation-distance-dependent quality control that uses the similarity of subgroups of dispersion curves to reject outliers and identify the frequency ranges with accurate measurements. The workflow is highly automated and applicable to large arrays. Applying our method to data from a large-N array that operated for one month near Marathon, Ontario, Canada, we use rectangular subarrays with 150-m station spacing and, typically, 1 hour of data and obtain Rayleigh-wave phase-velocity measurements in a 0.55-23.8 Hz frequency range, spanning over 5.4 octaves, nearly twice the typical frequency range of 1.5-3 octaves in previous studies. Phase-velocity maps and the subregion-average 1D velocity models they constrain show a high-velocity anomaly consistent with the known, west-dipping gabbro intrusions beneath the area. The new structural information can improve our understanding of the geometry of the gabbro intrusions, hosting the Cu-PGE Marathon deposit.</p>


2020 ◽  
Vol 224 (1) ◽  
pp. 626-636
Author(s):  
René Steinmann ◽  
Céline Hadziioannou ◽  
Eric Larose

SUMMARY About a decade ago, noise-based monitoring became a key tool in seismology. One of the tools is passive image interferometry (PII), which uses noise correlation functions (NCF) to retrieve seismic velocity variations. Most studies apply PII to vertical components recording oceanic low-frequent ambient noise ( < 1 Hz). In this work, PII is applied to high-frequent urban ambient noise ( > 1 Hz) on three three-component sensors. With environmental sensors inside the subsurface and in the air, we are able to connect observed velocity variations with environmental parameters. Temperatures below 0 °C correlate well with strong shear wave velocity increases. The temperature sensors inside the ground suggest that a frozen layer of less than 5 cm thickness causes apparent velocity increases above 2  % , depending on the channel pair. The observations indicate that the different velocity variation retrieved from the different channel pairs are due to different surface wave responses inherent in the channel pairs. With dispersion curve modelling in a 1-D medium we can verify that surfaces waves of several tens of metres wavelength experience a velocity increase of several percent due to a centimetres thick frozen layer. Moreover, the model verifies that Love waves show larger velocity increases than Rayleigh waves. The findings of this study provide new insights for monitoring with PII. A few days with temperature below 0 °C can already mask other potential targets (e.g. faults or storage sites). Here, we suggest to use vertical components, which is less sensitive to the frozen layer at the surface. If the target is the seasonal freezing, like in permafrost studies, we suggest to use three-component sensors in order to retrieve the Love wave response. This opens the possibility to study other small-scale processes at the shallow subsurface with surface wave responses.


2018 ◽  
Vol 123 (2) ◽  
pp. 1770-1792 ◽  
Author(s):  
Emanuel D. Kästle ◽  
A. El-Sharkawy ◽  
L. Boschi ◽  
T. Meier ◽  
C. Rosenberg ◽  
...  

2020 ◽  
Author(s):  
Giovanni Diaferia ◽  
Fabrizio Cammarano ◽  
Lapo Boschi ◽  
Fabio Cammarano

<p>The shear-wave velocities structure at depth can be unraveled from ambient noise (AN) as well as from earthquake-generated (EQ) surface waves. While the first approach mostly provides information at crustal scale, earthquake-based surface waves sense deeper structures due to their lower frequency content. However, for periods between 20 and 40 s, where the two methods often overlap, a number of studies have shown that phase velocities from EQ surface waves are systematically higher (~1%) than those retrieved from AN. The reason for such systematic bias is still debated; finite-frequency effects, overtone contamination, and off-path propagation of surface waves due to structural inhomogeneities have all been invoked as possible explanations of the discrepancy in question.</p><p>We explore the validity of the latter hypothesis, by correcting Rayleigh-wave phase velocities for the effect of off-path arrivals at two stations. The deviation from the theoretical path is estimated by evaluating the resemblance of the vertical with the π/2-shifted radial component of the recorded seismograms. We developed a two-station algorithm implementing such a correction and tested it on a dataset of seismograms collected from more than 350 stations recording 443 earthquake events from 2005 to 2019. We demonstrate that by compensating for the arrival-angle effects, the discrepancy between the two methods is significantly reduced. This result suggests that the off-path propagation between epicenters and receivers due to lateral inhomogeneity in the Earth's structure explains most of the discrepancy between AN and EQ phase velocities previously reported in the literature. Such improvement in determining Rayleigh phase velocities will lead to more reliable seismic tomographies and enhanced interpretations of seismic anomalies in terms of thermo-chemical characteristics.</p>


2018 ◽  
Vol 55 (8) ◽  
pp. 887-896 ◽  
Author(s):  
Taras Zaporozan ◽  
Andrew W. Frederiksen ◽  
Alexey Bryksin ◽  
Fiona Darbyshire

Two-station surface-wave analysis was used to measure Rayleigh-wave phase velocities between 105 station pairs in western Canada, straddling the boundary between the tectonically active Cordillera and the adjacent stable craton. Major variations in phase velocity are seen across the boundary at periods from 15 to 200 s, periods primarily sensitive to upper mantle structure. Tomographic inversion of these phase velocities was used to generate phase velocity maps at these periods, indicating a sharp contrast between low-velocity Cordilleran upper mantle and high-velocity cratonic lithosphere. Depth inversion along selected transects indicates that the Cordillera–craton upper mantle contact varies in dip along the deformation front, with cratonic lithosphere of the Taltson province overthrusting Cordilleran asthenosphere in the northern Cordillera, and Cordilleran asthenosphere overthrusting Wopmay lithosphere further south. Localized high-velocity features at sub-lithospheric depths beneath the Cordillera are interpreted as Farallon slab fragments, with the gap between these features indicating a slab window. A high-velocity feature in the lower lithosphere of the Slave province may be related to Proterozic or Archean subduction.


Author(s):  
Tat’iana Koroleva ◽  
Evgeniia Lyskova

Ambient noise surface wave tomography is a widely used method for determining the velocity structure of the upper layers of the Earth. It is based on the fact that the cross-correlation function (CCF) of noise at two stations, averaged over a long time interval, determines the Green's function of the surface wave. This allows us to estimate the group and phase velocities of surface waves on the paths between stations, which are used in surface-wave tomography. This makes it possible to ultimately estimate the spatial distribution of the S-wave velocities. The method is well-grounded on the assumption that the “noise” is a result of the superposition of surface waves propagating from sources uniformly distributed over the surface. Therefore, the initial data, which are long-period seismic records, are subjected to preliminary processing, an important stage of which is normalization, which allows reducing the effect of earthquakes and averaging the resulting CCFs over a long time interval. At the same time, we have shown that earthquakes mainly contribute to noise at periods above 30-40 s, whose sources are distributed unevenly. Therefore, in cases of clustering of foci in a certain limited area, for example, because of aftershocks after a strong earthquake, the CCF maxima, which determines the dispersion curve of the surface wave, are shifted to shorter times, and the group velocities are correspondingly overestimated. In determining the dispersion of Love waves from the CCF transversal (T-T) noise component, the presence of clusters leads to an additional underestimation of the group velocity due to the superposition on the T component (perpendicular to the inter-station path) of the radial component of the Rayleigh wave having a velocity less than the Love wave velocity. Therefore, the anisotropy coefficient, determined from the noise, is underestimated as compared to that obtained from the records of earthquakes along nearby paths. Obviously, to obtain more correct dispersion curves of both Rayleigh and Love waves, it is necessary, for summing the CCFs, to use time intervals in which earthquake clusters would be absent as far as possible.


Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 800-808 ◽  
Author(s):  
Choon B. Park ◽  
Richard D. Miller ◽  
Jianghai Xia

The frequency‐dependent properties of Rayleigh‐type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface‐wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental‐mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source‐generated noise inhibits the reliability of shear‐wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental‐mode Rayleigh waves (noise) are body waves, scattered and nonsource‐generated surface waves, and higher‐mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear‐wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace‐to‐trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable‐frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real‐time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface‐wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single‐measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept‐frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear‐wave velocity ([Formula: see text]) profile with a downhole [Formula: see text] profile.


Sign in / Sign up

Export Citation Format

Share Document