Seasonal prediction of the austral summer Southern Annular Mode, and investigation of its connection to the Southern Ocean

Author(s):  
Tim Hempel ◽  
André Düsterhus ◽  
Johanna Baehr

<div>The Southern Annular Mode (SAM) modulates the eddy-driven-westerly jet in the southern mid- to high-latitudes. This modulation has major impacts on the seasonal climate in the southern hemisphere. Thus, a seasonal prediction of the SAM is desirable. Still, only few studies show a significant prediction skill on this timescale. In this contribution the prediction skill of the SAM is improved by using its physical links to the Southern Ocean.</div><div>We use the seasonal prediction system based on the Max-Planck-Institute Earth-System-Model (MPI-ESM) in mixed resolution (MR). In ensemble reforecasts for 1982 to 2016 we find large regions of the surface ocean in the southern mid- to high-latitudes to be significantly predictable on seasonal timescales. In contrast, the atmospheric variables in the same regions show only very little skill. In the austral summer season (December-January-February (DJF)) different ensemble members evolve considerably different in the ocean and the atmosphere. With physical links between the Southern Ocean and the SAM, identified in ERA-Interim, we only select ensemble members that also show these links. This process is repeated every year and leads to a new time series with a reduced number of ensemble members. To evaluate the prediction skill of the new ensemble mean SAM we use the correlation coefficient and the Heidke Skill Score (HSS). The reduced ensemble has a correlation with ERA of 0.50, while the full ensemble shows a correlation of 0.31. Similarly the reduced ensemble has a HSS of 0.35 compared to the HSS of the full ensemble of 0.17.</div><div>We additionally show that choosing the same ensemble members we selected for the SAM also increases the prediction skill for other atmospheric variables. The reduced ensemble has an increased prediction skill for pressure, wind, and temperature in the southern mid- to high-latitudes, to which the selection is targeted.</div>

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Min Noh ◽  
Hyung-Gyu Lim ◽  
Jong-Seong Kug

AbstractAntarctic marine biological variability modulates climate systems via the biological pump. However, the knowledge of biological response in the Southern Ocean to climate variability still has been lack of understanding owing to limited ocean color data in the high latitude region. We investigated the surface chlorophyll concentration responses to the Southern annular mode (SAM) in the marginal sea of the Southern ocean using satellite observation and reanalysis data focusing on the austral summer. The positive phase of SAM is associated with enhanced and poleward-shifted westerly winds, leading to physical and biogeochemical responses over the Southern ocean. Our result indicates that chlorophyll has strong zonally asymmetric responses to SAM owing to different limiting factors of phytoplankton growth per region. For the positive SAM phase, chlorophyll tends to increase in the western Amundsen–Ross Sea but decreases in the D’Urville Sea. It is suggested that the distinct limiting factors are associated with the seasonal variability of sea ice and upwelling per region.


2013 ◽  
Vol 141 (10) ◽  
pp. 3477-3497 ◽  
Author(s):  
Mingyue Chen ◽  
Wanqiu Wang ◽  
Arun Kumar

Abstract An analysis of lagged ensemble seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), is presented. The focus of the analysis is on the construction of lagged ensemble forecasts with increasing lead time (thus allowing use of larger ensemble sizes) and its influence on seasonal prediction skill. Predictions of seasonal means of sea surface temperature (SST), 200-hPa height (z200), precipitation, and 2-m air temperature (T2m) over land are analyzed. Measures of prediction skill include deterministic (anomaly correlation and mean square error) and probabilistic [rank probability skill score (RPSS)]. The results show that for a fixed lead time, and as one would expect, the skill of seasonal forecast improves as the ensemble size increases, while for a fixed ensemble size the forecast skill decreases as the lead time becomes longer. However, when a forecast is based on a lagged ensemble, there exists an optimal lagged ensemble time (OLET) when positive influence of increasing ensemble size and negative influence due to an increasing lead time result in a maximum in seasonal prediction skill. The OLET is shown to depend on the geographical location and variable. For precipitation and T2m, OLET is relatively longer and skill gain is larger than that for SST and tropical z200. OLET is also dependent on the skill measure with RPSS having the longest OLET. Results of this analysis will be useful in providing guidelines on the design and understanding relative merits for different configuration of seasonal prediction systems.


2015 ◽  
Vol 15 (16) ◽  
pp. 22291-22329 ◽  
Author(s):  
C. E. Sioris ◽  
J. Zou ◽  
D. A. Plummer ◽  
C. D. Boone ◽  
C. T. McElroy ◽  
...  

Abstract. Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60–90 and 60–90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in eight of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = −0.80) of the monthly variability in water vapour at northern high-latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March 2004–2013). Using a seasonal timestep and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950–2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.


2021 ◽  
Author(s):  
Qiuyan Zhang ◽  
Yang Zhang ◽  
Zhaohua Wu

<p>Using the ensemble empirical mode decomposition (EEMD) method, this study systematically investigates the multiple timescales of the Southern Annular Mode (SAM) and identifies their relative contributions to the low-frequency persistence of SAM. Analyses show that the subseasonal sustaining of SAM mainly depends on the contribution of longer-timescale variabilities, especially the cross-seasonal variability. When subtracting the cross-seasonal variability from the SAM, the positive covariance between the eddy and zonal flow, which is suggested the positive eddy feedback in SAM, disappears. Composite analysis shows that only with strong cross-seasonal variability, the meridional shift of zonal wind, eddy momentum forcing and baroclinicity anomalies can be maintained for more than 20 days, mainly resulting from the longer-timescale (especially the cross-seasonal timescale) eddy-zonal flow interactions. This study further suggests that the dipolar sea surface temperature (SST) anomalies in the mid latitude of Southern Hemisphere (SH) is a possible cause for the cross-seasonal variability. Analysis shows that about half of the strong cross-seasonal timescale events are accompanied by evident dipolar SST anomalies, which mostly occur in austral summer. The cross-seasonal dependence of the eddy-zonal flow interactions suggests the longer-timescale (especially the cross-seasonal timescale) contribution cannot be neglected in subseasonal prediction of SAM.</p>


2010 ◽  
Vol 40 (7) ◽  
pp. 1659-1668 ◽  
Author(s):  
A. M. Treguier ◽  
J. Le Sommer ◽  
J. M. Molines ◽  
B. de Cuevas

Abstract The authors evaluate the response of the Southern Ocean to the variability and multidecadal trend of the southern annular mode (SAM) from 1972 to 2001 in a global eddy-permitting model of the DRAKKAR project. The transport of the Antarctic Circumpolar Current (ACC) is correlated with the SAM at interannual time scales but exhibits a drift because of the thermodynamic adjustment of the model (the ACC transport decreases because of a low renewal rate of dense waters around Antarctica). The interannual variability of the eddy kinetic energy (EKE) and the ACC transport are uncorrelated, but the EKE decreases like the ACC transport over the three decades, even though meridional eddy fluxes of heat and buoyancy remain stable. The contribution of oceanic eddies to meridional transports is an important issue because a growth of the poleward eddy transport could, in theory, oppose the increase of the mean overturning circulation forced by the SAM. In the authors’ model, the total meridional circulation at 50°S is well correlated with the SAM index (and the Ekman transport) at interannual time scales, and both increase over three decades between 1972 and 2001. However, given the long-term drift, no SAM-linked trend in the eddy contribution to the meridional overturning circulation is detectable. The increase of the meridional overturning is due to the time-mean component and is compensated by an increased buoyancy gain at the surface. The authors emphasize that the meridional circulation does not vary in a simple relationship with the zonal circulation. The model solution points out that the zonal circulation and the eddy kinetic energy are governed by different mechanisms according to the time scale considered (interannual or decadal).


2020 ◽  
Vol 47 (4) ◽  
Author(s):  
Cynthia D. Nevison ◽  
David R. Munro ◽  
Nicole S. Lovenduski ◽  
Ralph F. Keeling ◽  
Manfredi Manizza ◽  
...  

2020 ◽  
Author(s):  
Kial Douglas Stewart ◽  
Andrew McC. Hogg ◽  
Matthew H. England ◽  
Darryn W. Waugh

Sign in / Sign up

Export Citation Format

Share Document