Mechanistic modelling of the influence of temperature on the wood anatomy of Scots pine

Author(s):  
Andrew Friend

<p>Despite its importance for the study of past climates, as well as its significance for carbon sequestration, we lack a mechanistic explanation for how temperature controls wood anatomy. A model of xylogenesis is presented and used to analyse observed tree ring anatomy-temperature relationships in Scots pine (<em>Pinus sylvestris</em>). The model treats the daily proliferation of new cells in the cambium and their subequent differentiation through expansion and secondary wall thickening phases. Control on size at division in the cambium follows recent work on the <em>Arabidopsis</em> shoot apical meristem, and cell enlargement rates in the cambium and enlargement zone are controlled by temperature. The duration of post-cambial enlargement is partially controlled by the rate at which cells pass through the enlargement zone, and partially by the size of this zone, which is controlled by daylength. This set of assumptions is sufficient to generate observed profiles of cell sizes across radial files, with characteristic transitions from earlywood to latewood. After they leave the enlarging zone, cells enter the wall thickening zone, the width of which is also dependent on daylength. A temperature-dependent rate of wall material deposition is insufficient to reproduce the observed gradient in mass density across the radial file, and fails to fully capture the observed seasonality of the correlation between maximum latewood density and temperature. Inclusion of a control on the rate of wall deposition from substrate (sugar) supply, diffusing from the phloem across the radial file, corrects these deficiencies. The resulting model provides a mechanistic explanation of temperature-tree ring relationships, and has the potential to underpin understanding of how climate and CO<sub>2</sub> interact in determining the amount of carbon sequestered in trees.</p>

1994 ◽  
Vol 42 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Malcolm K. Hughes ◽  
Wu Xiangding ◽  
Shao Xuemei ◽  
Gregg M. Garfin

AbstractMay-June (MJ) and April-July (AJ) precipitation at Huashan in north-central China has been reconstructed for the period A.D. 1600 to 1988 using tree-ring density and width fromPinus armandii. MJ precipitation (based on ring width and maximum latewood density) calibrated and cross-validated against local instrumental data more strongly than AJ precipitation (based only on ring width). A major drought was reconstructed for the mid- and late 1920s, confirmed by local documentary sources. This drought (culminating in 1929) was the most severe of the 389-yr period for MJ and second most severe for AJ, after an event ending in 1683. Neither reconstruction shows much spectral power at frequencies lower than 1 in 10 yr, but both show concentrations of power between 2.1 and 2.7 yr and 3.5 to 9 yr. There are significant correlations between the two reconstructions and a regional dryness/wetness index (DW) based on documentary sources, particularly at high frequencies. These correlations are focused in the 7.6- to 7.3-, 3.8- to 3.6-, and 2.5-yr periods. Using singular spectrum analysis, quasiperiodic behavior with a period close to 7.2 yr was identified in the MJ precipitation reconstruction and in the DW index based on documents.


2011 ◽  
Vol 107 (3-4) ◽  
pp. 633-643 ◽  
Author(s):  
Feng Chen ◽  
Yu-jiang Yuan ◽  
Wen-shou Wei ◽  
Shu-long Yu ◽  
Zi-ang Fan ◽  
...  

1987 ◽  
Vol 87 (4) ◽  
pp. 595-607
Author(s):  
E. P. ELEFTHERIOU

The densities of microtubules (MTs) along the lateral walls of developing sieve elements in root protophloem of wheat have been investigated by electron microscopy. They increase gradually in the very young sieve elements to reach a maximum just before the initiation of wall thickening. During wall increment MTs remain at high densities (more than 10 MTs μm−1), but their number declines abruptly when wall material deposition ceases. Cell wall thickening is not uniform: broad ridges alternate with narrow depressions, the latter occupied by plasmodesmata. During wall material deposition MTs overlie the thickenings only, being entirely absent from the non-thickened areas. The orientation of MTs reflects that of the currently deposited cellulose microfibrils in the cell wall, all being perpendicular to the direction of cell expansion. Numerous vesicles, apparently of Golgi apparatus origin, are encountered amongst the cortical arrays of MTs. Though the least spacing between the contiguous MTs is much smaller than the diameter of even the smallest vesicles, the latter were seen amongst the MTs, indicating that MTs do not prevent the vesicles from passing between them towards the developing area. All results favour the suggestion that MTs in sieve elements are involved in cell wall pattern development, cellulose microfibril orientation, and presumably in cell elongation.


Trees ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Alexander V. Kirdyanov ◽  
Eugene A. Vaganov ◽  
Malcolm K. Hughes

2020 ◽  
Author(s):  
Laia Andreu-Hayles ◽  
Rosanne D'Arrigo ◽  
Rose Oelkers ◽  
Kevin Anchukaitis ◽  
Greg Wiles ◽  
...  

<p>Tree ring-width (TRW) and Maximum Latewood Density (MXD) series have been largely used to develop high-resolution temperature reconstructions for the Northern Hemisphere. The divergence phenomenon, a weakening of the positive relationship between TRW and summer temperatures, has been observed particularly in northwestern North America chronologies. In contrast, MXD datasets have shown a more stable relationship with summer temperatures, but it is costly and labor-intensive to produce. Recently, methodological advances in image analyses have led to development of a less expensive and labor-intensive MXD proxy known as Blue Intensity (BI). Here, we compare 6 newly developed BI tree-ring chronologies of white spruce (<em>Picea glauca</em> [Moench] Voss) from high-latitude boreal forests in North America (Alaska in USA; Yukon and the Northwestern Territory in Canada), with MXD chronologies developed at the same sites. We assessed the quality of BI in relation to MXD based on mean correlation between trees, chronology reliability based on the Expressed Population Signal (EPS), spectral properties, and the strength and spatial extent of the temperature signal. Individual BI chronologies established significant correlations with summer temperatures showing a similar strength and spatial cover than MXD chronologies. Overall, the BI tree-ring data is emerging as a valuable proxy for generating high-resolution temperature spatial reconstructions over northwestern America.</p>


Author(s):  
Marina V. Fonti ◽  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Eugene A. Vaganov

Tree-ring formation studies are important for assessing the impact of environmental factors on tree growth at intra-seasonal resolution. This information is necessary for understanding plant acclimatization to current and expected climate changes. Little is still known about how tree age may affect the duration and rate of annual ring formation. In this study, we investigated tree-ring formation in Scots pine (Pinus sylvestris L.) trees of different ages (30- and 95-year-old trees) from the foreststeppe zone in Southern Siberia. The main objectives were 1) to estimate the timing of cambial activity by distinguishing the phases of division, enlargement, wall thickening, and maturation of tracheids and 2) to compare the anatomical structure of the tracheids forming the annual rings of the differently aged trees. Stem tissue was sampled weekly from April to September 2014. The results showed a 1-2 week difference in duration of the phases of xylem formation between the groups; in addition, the ring width of the young trees was slightly narrower. The size of the tracheids of the entirely formed ring (i.e. the results of the enlargement phase) did not differ between the groups whereas the dynamics of the cell-wall thickness showed significant differences. The data obtained in the present study can provide references to calibrate process-based models linking environment to wood formation. These data can be used to benchmark time-explicit simulated measurements of annual ring increment and cell anatomical structure against the corresponding parameters of mature trees growing under natural conditions


Sign in / Sign up

Export Citation Format

Share Document