Microbial alkalinity production and clay mineral alteration in marine methanogenic sediments: implications for diagenetic carbonate formation

Author(s):  
Gerhard Herda ◽  
Elena Petrishcheva ◽  
Susanne Gier ◽  
Bo Liu ◽  
Patrick Meister

<p>A numerical reaction transport model was developed to simulate the effects of microbial activity and mineral reactions on the composition of the porewater in a 150-m-thick sedimentary interval drilled in the Peruvian deep-sea trench (Ocean Drilling Program, Site 1230). This site shows a zone of intense methanogenesis below 10 m sediment depth. The simulation shows that microbial activity accounts for most alkalinity production of up to 150 mmol/l, while the excess of CO<sub>2</sub> produced during methanogenesis causes a strong acidification of the porewater. Ammonium production from organic matter degradation significantly contributes to alkalinity production, whereby ion exchange was simulated to compensate for hidden ammonium production not otherwise accounted for. Although clay minerals are reacting far too slowly to equilibrate with the porewater over millions of years, additional alkalinity is provided by alteration of chlorite, illite, and feldspar to kaolinite. Overall, alkalinity production in methanogenic zones is sufficient to prevent dissolution of carbonates and to induce carbonate formation either continuously as disseminated cryptic dolomite or episodically as hard lithified beds along a supersaturation front. The simulation presented here provides fundamental insight into the diagenetic effects of the deep biosphere and may also be applicable for the long-term prediction of the stability and safety of deep CO<sub>2</sub> storage reservoirs.</p><p> </p>

2022 ◽  
Vol 9 ◽  
Author(s):  
Patrick Meister ◽  
Gerhard Herda ◽  
Elena Petrishcheva ◽  
Susanne Gier ◽  
Gerald R. Dickens ◽  
...  

A numerical reaction-transport model was developed to simulate the effects of microbial activity and mineral reactions on the composition of porewater in a 230-m-thick Pleistocene interval drilled in the Peru-Chile Trench (Ocean Drilling Program, Site 1230). This site has porewater profiles similar to those along many continental margins, where intense methanogenesis occurs and alkalinity surpasses 100 mmol/L. Simulations show that microbial sulphate reduction, anaerobic oxidation of methane, and ammonium release from organic matter degradation only account for parts of total alkalinity, and excess CO2 produced during methanogenesis leads to acidification of porewater. Additional alkalinity is produced by slow alteration of primary aluminosilicate minerals to kaolinite and SiO2. Overall, alkalinity production in the methanogenic zone is sufficient to prevent dissolution of carbonate minerals; indeed, it contributes to the formation of cemented carbonate layers at a supersaturation front near the sulphate-methane transition zone. Within the methanogenic zone, carbonate formation is largely inhibited by cation diffusion but occurs rapidly if cations are transported into the zone via fluid conduits, such as faults. The simulation presented here provides fundamental insight into the diagenetic effects of the deep biosphere and may also be applicable for the long-term prediction of the stability and safety of deep CO2 storage reservoirs.


Author(s):  
David J Beerling ◽  
Michael Harfoot ◽  
Barry Lomax ◽  
John A Pyle

The discovery of mutated palynomorphs in end-Permian rocks led to the hypothesis that the eruption of the Siberian Traps through older organic-rich sediments synthesized and released massive quantities of organohalogens, which caused widespread O 3 depletion and allowed increased terrestrial incidence of harmful ultraviolet-B radiation (UV-B, 280–315 nm; Visscher et al . 2004 Proc. Natl Acad. Sci. USA 101 , 12 952–12 956). Here, we use an extended version of the Cambridge two-dimensional chemistry–transport model to evaluate quantitatively this possibility along with two other potential causes of O 3 loss at this time: (i) direct effects of HCl release by the Siberian Traps and (ii) the indirect release of organohalogens from dispersed organic matter. According to our simulations, CH 3 Cl released from the heating of coals alone caused comparatively minor O 3 depletion (5–20% maximum) because this mechanism fails to deliver sufficiently large amounts of Cl into the stratosphere. The unusual explosive nature of the Siberian Traps, combined with the direct release of large quantities of HCl, depleted the model O 3 layer in the high northern latitudes by 33–55%, given a main eruptive phase of less than or equal to 200 kyr. Nevertheless, O 3 depletion was most extensive when HCl release from the Siberian Traps was combined with massive CH 3 Cl release synthesized from a large reservoir of dispersed organic matter in Siberian rocks. This suite of model experiments produced column O 3 depletion of 70–85% and 55–80% in the high northern and southern latitudes, respectively, given eruption durations of 100–200 kyr. On longer eruption time scales of 400–600 kyr, corresponding O 3 depletion was 30–40% and 20–30%, respectively. Calculated year-round increases in total near-surface biologically effective (BE) UV-B radiation following these reductions in O 3 layer range from 30–60 (kJ m −2  d −1 ) BE up to 50–100 (kJ m −2  d −1 ) BE . These ranges of daily UV-B doses appear sufficient to exert mutagenic effects on plants, especially if sustained over tens of thousands of years, unlike either rising temperatures or SO 2 concentrations.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Beth N. Orcutt ◽  
C. Geoffrey Wheat ◽  
Olivier Rouxel ◽  
Samuel Hulme ◽  
Katrina J. Edwards ◽  
...  

Soil Systems ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 53 ◽  
Author(s):  
Joshua Padilla ◽  
H. Selim

Glyphosate (N-(phosphonomethyl) glycine) (GPS) is currently the most commonly used herbicide worldwide, and is generally considered as immobile in soils. However, numerous reports of the environmental occurrence of the herbicide coupled with recent evidence of human toxicity necessitate further investigation as to the behavior of GPS in the soil environment. Batch sorption studies along with miscible displacement experiments were carried out in order to assess the mobility of GPS in two Louisiana agricultural soils; Commerce silt loam and Sharkey clay. Batch results indicated a high affinity of both soils for solvated GPS, with greater affinity observed by the Sharkey soil. GPS sorption in the Commerce soil was most likely facilitated by the presence of amorphous Fe and Al oxides, whereas the high cation exchange capacity of the Sharkey soil likely allows for GPS complexation with surface exchangeable poly-valent cations. Miscible displacement studies indicate that GPS mobility is highly limited in both soils, with 3% and 2% of the applied herbicide mass recovered in the effluent solution from the Commerce and Sharkey soils, respectively. A two-site multi-reaction transport model (MRTM) adequately described GPS breakthrough from both soils and outperformed linear modeling efforts using CXTFIT. Analysis of extracted herbicide residues suggests that the primary metabolite of GPS, aminomethylphosphonic acid (AMPA), is more mobile in both soils, although both compounds are strongly retained.


1998 ◽  
Vol 195 (1-4) ◽  
pp. 733-739 ◽  
Author(s):  
Theodoros G Mihopoulos ◽  
Vijay Gupta ◽  
Klavs F Jensen

Soil Research ◽  
1978 ◽  
Vol 16 (1) ◽  
pp. 9 ◽  
Author(s):  
JM Tisdall ◽  
B Cockroft ◽  
NC Uren

On moist incubation the equivalent of 50 t ha-1 or more of ground, readily decomposable organic materials greatly increased the proportion of stable aggregates of Shepparton fine sandy loam within 1-4 weeks; the aggregates remained stable for up to 32 weeks if left undisturbed. Severe restriction of microbial activity in aggregates of Shepparton fine sandy loam by sterilization or dryness increased the effect of physical disruption associated with intermittent wetting and drying, and simulated cultivation. The results suggest that microorganisms in non-sterile moist soil can produce bonding substances which compensate partially for those bonds broken physically.


1999 ◽  
Vol 386 ◽  
pp. 15-42 ◽  
Author(s):  
H. M. SCHUTTELAARS ◽  
H. E. DE SWART

It is demonstrated, by using a simple model, that bedforms in a short tidal embayment can develop due to a positive feedback between tidal currents, sediment transport and bedforms. The water motion is modelled by the depth integrated shallow water equations. The system is forced by a prescribed free-surface elevation at the entrance of the embayment. For the sediment dynamics a diffusively dominated suspended load transport model is considered. Tidal averaging is used to obtain the bottom profiles at the long morphological time scale.The stability of a constantly sloping equilibrium bottom profile is studied for various combinations of the model parameters. It turns out that without a mechanism that generates vorticity this equilibrium profile is stable. In that case small-scale perturbations can at most become marginally stable if no bedload term in the bottom evolution equation is incorporated. If vorticity is generated, in our model by bottom friction torques, the basic state is unstable. The spatial patterns of the unstable modes and their growth rates depend, among other things, on the strength of the bottom friction, the width of the embayment and the grain size: if the sediment under consideration consists of large particles, the equilibrium will be more stable than when smaller particles are considered. Without a diffusive term in the bed evolution equation, small-scale perturbations become unstable. To avoid this physically unrealistic behaviour bedload terms are included in the sediment transport. Furthermore, it is shown that using an asymptotic expansion for the concentration as given in earlier literature is only valid for small or moderate mode numbers and the technique is extended to large mode numbers. A physical interpretation of the results is also given.


Sign in / Sign up

Export Citation Format

Share Document