Partial melting of an enstatite chondrite at 1 GPa: Implications for early planetary differentiation

Author(s):  
Matteo Masotta ◽  
Luigi Folco ◽  
Luca Ziberna ◽  
Robert Myhill

<p>We present new time series partial melting experiments performed on a natural enstatite chondrite (EL6), aimed at investigating the textural and geochemical changes induced by silicate-metal equilibration during early planetary differentiation. The starting material of our experiments consisted of small fragments (ca. 50 mg) obtained from the interior of the enstatite chondrite MCY 14005 (MacKay Glacier, Antarctica), collected during the XXX° Italian Expedition in Antarctica (PNRA). Experiments were performed in graphite capsules at a pressure of 1 GPa, at temperature ranging from 1100 to 1300 °C, with run durations from 1 to 24 h. The initial phase assemblage of the enstatite chondrite, mostly composed by granular enstatite and Fe-Ni metal (up to 400 µm in size) with minor amounts of sulphides and plagioclase, undergoes significant changes with increasing temperature and run duration. At 1100 °C, no silicate melt is produced and subsolidus reactions occur at the contact between the metal and silicate phases. At 1200 °C, small amounts of silicate melt are produced at the grain boundaries and enstatite grains in contact with the melt grow Fe-enriched rims. The metal portions are characterized by two immiscible liquid phases that exhibit rounded shapes when in contact with the silicate melt, whereas smaller (micrometric) liquid metal spheres occur isolated within the silicate melt throughout the experimental charges. These features are already observed in the 1 h experiment but become increasingly evident with increasing run duration, and at higher temperatures. In the experiments performed at 1300 °C, the amount of silicate melt increases and new silicate minerals form (olivine and low-Ca-pyroxene).</p><p>Enstatite chondrites are characterized by an oxygen isotope composition similar to that of the bulk Earth and Moon, and are considered to have initially formed in the terrestrial planetary zone of the solar nebula. For this reason, they represent a suitable material to investigate the early planetary differentiation processes that occurred in the proto-Earth system. Preliminary results from our experiments indicate that, at the investigated oxygen fugacity (1-2 log units below the IW buffer), the Fe-Si exchange between the metal and silicate phases allows the formation of silicate melt and silicate phases such as olivine and low-Ca-pyroxene. At the same time, the change in shape of the metal grains (increasingly circular/spherical with increasing temperature) and the overall reduction of their number density with increasing experimental time point to rapid aggregation of the metal phase and, possibly, to fast silicate-metal differentiation in small planetesimals.</p>

1993 ◽  
Vol 8 (9) ◽  
pp. 2187-2190 ◽  
Author(s):  
Y.C. Guo ◽  
H.K. Liu ◽  
S.X. Dou

Silver doping into (Bi, Pb)2Sr2Ca2Cu3O10 superconducting composite tapes was found to accelerate the formation process of high-Tc (2223) phase owing to lowering the partial melting point of the samples. The differential thermal analysis (DTA) results showed that the partial melting temperature of the sample was lowered by about 10 °C from 850 °C to 840 °C by silver doping. However, with sufficient sintering both the silver-doped and undoped samples can reach a very high level of high-Tc phase fraction, suggesting that the silver doping only speeds up the rate of high-Tc phase formation, but does not change the final phase assemblage of the materials. The reaction kinetics was analyzed by using the Avrami equation, and the results indicated that the conversion process of low-Tc (2212) phase to high-Tc (2223) phase was a diffusion-controlled, two-dimensional reaction. The correlation of the phase evolution with electrical property inside the superconducting tape during the process of heat treatment was also discussed.


Author(s):  
Carl B Agee

Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (<2 GPa); however, at higher pressures, this difference is greatly reduced and becomes very small at pressures above 5 GPa. This implies that the pressure effect on the partial molar volume of water in silicate melt is highly dependent on pressure regime. Thus, H 2 O can be thought of as the most compressible ‘liquid oxide’ component in silicate melt at low pressure, but at high pressure its compressibility resembles that of other liquid oxide components. A best-fit curve to the data on from various studies allows calculation of hydrous melt compression curves relevant to high-pressure planetary differentiation. From these compression curves, crystal–liquid density crossovers are predicted for the mantles of the Earth and Mars. For the Earth, trapped dense hydrous melts may reside atop the 410 km discontinuity, and, although not required to be hydrous, atop the core–mantle boundary (CMB), in accord with seismic observations of low-velocity zones in these regions. For Mars, a density crossover at the base of the upper mantle is predicted, which would produce a low-velocity zone at a depth of approximately 1200 km. If perovskite is stable at the base of the Martian mantle, then density crossovers or trapped dense hydrous melts are unlikely to reside there, and long-lived, melt-induced, low-velocity regions atop the CMB are not predicted.


Cerâmica ◽  
1999 ◽  
Vol 45 (291) ◽  
pp. 05-23 ◽  
Author(s):  
V. A. Izhevskiy ◽  
L. A. Gênova ◽  
J. C. Bressiani

In view of the considerable progress that has been made over the last several years on the fundamental understanding of phase relationships, microstructural design, and tailoring of properties for specific applications of rare-earth doped SiAlONs, a clear review of current understanding of the basic regularities lying behind the processes that take place during sintering of SiAlONs is timely. Alternative secondary phase development, mechanism and full reversibility of thea«btransformation in relation with the phase assemblage evolution are elucidated. Reaction sintering of multicomponent SiAlONs is considered with regard of wetting behavior of silicate liquid phases formed on heating. Regularities of SiAlON’s behavior and stability are tentatively explained in terms of RE-element ionic radii and acid/base reaction principle.


RSC Advances ◽  
2017 ◽  
Vol 7 (25) ◽  
pp. 15302-15308
Author(s):  
Chaeyeon Son ◽  
Sun Young Kim ◽  
So Yeong Bahn ◽  
Hyung Joon Cha ◽  
Yoo Seong Choi

A thin film was formed through in vitro CaCO3 crystallization in the presence of complex coacervates, which was expected to be planar and poorly crystalline CaCO3 guided at the interface of two immiscible liquid phases upon complex coacervation.


2004 ◽  
Vol 94 (3/4) ◽  
pp. 177-180 ◽  
Author(s):  
Markus Gruber ◽  
Michael Wagner ◽  
Roland Heidenreich ◽  
Jürgen G.E. Krauter ◽  
N. Coskun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document