Contributions of methane and nitrous oxide to peat greenhouse gas emissions from forests and oil palm plantations in an Indonesian peatland

Author(s):  
Erin Swails ◽  
Kristell Hergoualc'h ◽  
Louis Verchot ◽  
Deborah Lawrence

<p>Land-use change in tropical peatlands substantially impacts emissions of methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) in addition to emissions of carbon dioxide (CO<sub>2</sub>). However, assessments of peat GHG budgets are scarce and the contributions of CH<sub>4</sub> and N<sub>2</sub>O remain highly uncertain. The objective of our research was to assess changes in peat GHG flux and budget associated with peat swamp forest disturbance and conversion to oil palm plantation and to evaluate drivers of variation in trace gas fluxes. Over a period of one and a half year, we monitored monthly CH<sub>4</sub> and N<sub>2</sub>O fluxes together with environmental variables in three undrained peat swamp forests and three oil palm plantations on peat in Central Kalimantan. The forests included two primary forests and one 30-year-old secondary forest. We calculated the peat GHG budget in both ecosystems using soil respiration and litterfall rates measured concurrently with CH<sub>4</sub> and N<sub>2</sub>O fluxes, site-specific soil respiration partitioning ratios, and literature-based values of root inputs and dissolved organic carbon export. Peat CH<sub>4</sub> fluxes (kg CH<sub>4</sub> ha<sup>-1</sup> yr<sup>-1</sup>) were insignificant in oil palm (0.3 ± 0.4) while emissions in forest were high (14.0 ± 2.8), and larger in wet than in dry months. N<sub>2</sub>O emissions (kg N<sub>2</sub>O ha<sup>-1</sup> yr<sup>-1</sup>) were highly variable spatially and temporally and similar across land-uses (5.0 ± 3.9 and 5.2 ± 3.7 in oil palm and forest). Temporal variation of CH<sub>4</sub> was controlled by water table level and soil water-filled pore space in forest and oil palm, respectively. Monthly fluctuations of N<sub>2</sub>O were linked to water table level in forest. The peat GHG budget (Mg CO<sub>2</sub> equivalent ha<sup>-1</sup> yr<sup>-1</sup>) in oil palm (31.7 ± 8.6) was nearly eight times the budget in forest (4.0 ± 4.8) owing mainly to decreased peat C inputs and increased peat C outputs. The GHG budget was also ten times higher in the secondary forest (10.2 ± 4.5) than in the primary forests (0.9 ± 3.9) on the account of a larger peat C budget and N<sub>2</sub>O emission rate. In oil palm 96% of emissions were released as CO<sub>2</sub> whereas in forest CH<sub>4</sub> and N<sub>2</sub>O together contributed 65% to the budget. Our study highlights the disastrous atmospheric impact associated with forest degradation and conversion to oil palm in tropical peatlands and stresses the need to investigate GHG fluxes in disturbed undrained lands.</p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Erin Swails ◽  
Kristell Hergoualc’h ◽  
Louis Verchot ◽  
Nisa Novita ◽  
Deborah Lawrence

Land-use change in tropical peatlands substantially impacts peat emissions of methane (CH4) and nitrous oxide (N2O) in addition to emissions of carbon dioxide (CO2). However, assessments of full peat greenhouse gas (GHG) budgets are scarce and CH4 and N2O contributions remain highly uncertain. The objective of our research was to assess changes in peat GHG flux and budget associated with peat swamp forest disturbance and conversion to oil palm plantation and to evaluate drivers of variation in trace gas fluxes. Over a period of one and a half year, we monitored monthly CH4 and N2O fluxes together with environmental variables in three undrained peat swamp forests and three oil palm plantations on peat in Central Kalimantan. The forests included two primary forests and one 30-year-old secondary forest. We calculated the peat GHG budget in both ecosystems using soil respiration and litterfall rates measured concurrently with CH4 and N2O fluxes, site-specific soil respiration partitioning ratios, and literature-based values of root inputs and dissolved organic carbon export. Peat CH4 fluxes (kg CH4 ha−1 year−1) were insignificant in oil palm (0.3 ± 0.4) while emissions in forest were high (14.0 ± 2.8), and larger in wet than in dry months. N2O emissions (kg N2O ha−1 year−1) were highly variable spatially and temporally and similar across land-uses (5.0 ± 3.9 and 5.2 ± 3.7 in oil palm and forest). Temporal variation of CH4 was controlled by water table level and soil water-filled pore space in forest and oil palm, respectively. Monthly fluctuations of N2O were linked to water table level in forest. The peat GHG budget (Mg CO2 equivalent ha−1 year−1) in oil palm (31.7 ± 8.6) was nearly eight times the budget in forest (4.0 ± 4.8) owing mainly to decreased peat C inputs and increased peat C outputs. The GHG budget was also ten times higher in the secondary forest (10.2 ± 4.5) than in the primary forests (0.9 ± 3.9) on the account of a larger peat C budget and N2O emission rate. In oil palm 96% of emissions were released as CO2 whereas in forest CH4 and N2O together contributed 65% to the budget. Our study highlights the disastrous atmospheric impact associated with forest degradation and conversion to oil palm in tropical peatlands and stresses the need to investigate GHG fluxes in disturbed undrained lands.


1996 ◽  
Vol 35 (3) ◽  
pp. 401-418 ◽  
Author(s):  
Kristiina Regina ◽  
Hannu Nykänen ◽  
Jouko Silvola ◽  
Pertti J. Martikainen

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1587
Author(s):  
Imam Basuki ◽  
J. Boone Kauffman ◽  
James T. Peterson ◽  
Gusti Z. Anshari ◽  
Daniel Murdiyarso

Deforested and converted tropical peat swamp forests are susceptible to fires and are a major source of greenhouse gas (GHG) emissions. However, information on the influence of land-use change (LUC) on the carbon dynamics in these disturbed peat forests is limited. This study aimed to quantify soil respiration (heterotrophic and autotrophic), net primary production (NPP), and net ecosystem production (NEP) in peat swamp forests, partially logged forests, early seral grasslands (deforested peat), and smallholder-oil palm estates (converted peat). Peat swamp forests (PSF) showed similar soil respiration with logged forests (LPSF) and oil palm (OP) estates (37.7 Mg CO2 ha−1 yr−1, 40.7 Mg CO2 ha−1 yr−1, and 38.7 Mg CO2 ha−1 yr−1, respectively), but higher than early seral (ES) grassland sites (30.7 Mg CO2 ha−1 yr−1). NPP of intact peat forests (13.2 Mg C ha−1 yr−1) was significantly greater than LPSF (11.1 Mg C ha−1 yr−1), ES (10.8 Mg C ha−1 yr−1), and OP (3.7 Mg C ha−1 yr−1). Peat swamp forests and seral grasslands were net carbon sinks (10.8 Mg CO2 ha−1 yr−1 and 9.1 CO2 ha−1 yr−1, respectively). In contrast, logged forests and oil palm estates were net carbon sources; they had negative mean Net Ecosystem Production (NEP) values (−0.1 Mg CO2 ha−1 yr−1 and −25.1 Mg CO2 ha−1 yr−1, respectively). The shift from carbon sinks to sources associated with land-use change was principally due to a decreased Net Primary Production (NPP) rather than increased soil respiration. Conservation of the remaining peat swamp forests and rehabilitation of deforested peatlands are crucial in GHG emission reduction programs.


2019 ◽  
Vol 24 (2) ◽  
pp. 141-151
Author(s):  
Aji Nuralam Dwisutono ◽  
Sri Wilarso Budi ◽  
Istomo Istomo

The characteristics of tropical peatlands are still able to form a high diversity of plants. Conversion of tropical peatlands affects the composition of plants. The aim of this study was to find out effect of land use changes to the composition and diversity of plants in the Peat Hydrological Unit (PHU) Mendahara - Batanghari River. The research was conducted in three land use categories, namely secondary forest, coffee plantation, and oil palm plantation (subdivided into oil palm plantation 1 and oil palm plantation 2). In each study location, sample lane 20 m x 200 m were made. Overall, we found 77 species of plants. The results showed   number of plant species decreased due to changes of land use. There are 51 - 53 species of plants in secondary forest areas (out of a total of 58 species) that are not found in oil palm and coffee plantations areas. Differences in composition were also shown in the low value of community similarity (<50%). In the oil palm and coffee plantation areas, plant communities tend to be dominated by pioneer plants such as Melicope lunu-ankenda, Coffea liberica, Macaranga triloba, and Melastoma malabathricum. Secondary forest was dominated by plants species that characterize peatlands such as Tetramerista glabra, Parastemon urophyllus, Knema percoriacea, Litsea costalis var. nidularis and Madhuca motleyana. Changes in land use also reduce the level of diversity (H 'and R) at various levels of growth. Whereas in the oil palm and coffee plantation areas tend to form uniform stands (indicated through index E which describes the abundance distribution in community and index C which describes the dominance of species). Generally, the distribution pattern of plants is clumped. Uniform distribution was found in K. percoriacea and L. costalis var. nidularis. Keywords: land use changes, peatland characteristics, plant composition, plant diversity


2013 ◽  
Vol 18 (2) ◽  
pp. 125 ◽  
Author(s):  
Ai Dariah ◽  
Fahmuddin Agus ◽  
Erni Susanti ◽  
. Jubaedah

Carbon dioxide emission on peatland under oil palm plantation were highly varied probably due to many factors involved.  The objectives of the research were to evaluate the effect of distance sampling from center of oil palm tree on Carbon dioxide flux, and  to study the factors that cause variability of carbon dioxide flux on peatland under oil palm plantation.  The study was conducted on peatland at Arang-Arang Village, Kumpek Ulu Sub-District, Muaro Jambi District, Jambi Province, on six year old oil palm plantation.  The study was conducted in the form of observational exploratory.  Emission measurements performed on 5 selected oil palm trees at points within 100, 150, 200, 250, 300, 350, and 400 cm from the center of trunk.  Carbon dioxide flux was measured using (IRGA), Li-COR 820.  The results showed that there is significant correlation between the distance of sampling from center of oil palm tree and Carbon dioxide flux.  The farther distance from the tree, Carbon dioxide flux more decreased. Before applying fertilizer, variability of soil fertility was not significantly correlated with the flux of Carbon dioxide, so the difference of Carbon dioxide flux based on distance sampling can be caused by root distribution factor.  After fertilizer application, variability of Carbon dioxide flux under the oil palm tree were beside affected by differences in root distribution, was also greatly influenced by fertilization.Keywords: Carbon dioxide flux, distance sampling, oil palm, peat, root-related respiration [How to Cite: Dariah A, F Agus, E Susanti and Jubaedah. 2013.Relationship between Sampling Distance and Carbon Dioxide Emission under Oil Palm Plantation. J Trop Soils 18 (2): 125-130. Doi: 10.5400/jts.2013.18.2.125][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.2.125] REFERENCESAgus F, E Handayani, van M Noordwijk, K Idris and S Sabiham.  2010 Root respiration interferes with peat CO2 emission measurement. 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1 - 6 August 2010, Brisbane, Australia. Published on DVD.Amador JA and RD Jones.  1993.  Nutrient limitation on microbial respiration in peat soil with diffrent total phosphorus content.  Soil Biol Biochem  25: 793-801.Franklin O, P Hoogberg, A Ekbled and GI Agren.  2003.  Pine forest floor carbon accumulation in response to N and PK addition: Bomb C-14 modeling and respiration studies.  Ecosystem 6: 644-658.  Freeman C, N Ostle and H Kang.  2001.  An Enzymic ‘latch’ on global carbon store-a shortage of oxigen locks up carbon in peatlands by restraining a single enzyme.  Nature 409: 149-149.Hanson PJ, NT Edwards, CT Garten and JA Andrew.  2000.  Separating root and soil microbial contributions to soil respiration: A review of methods and observations.  Biogeochemistry 48: 115-146.Henson IE, and SH Chai.  1997.  Analysis of oil palm productivity.  II. Biomass, distribution, productivity and turnover of the root system.  Elaeis 9: 78-92.Hergoualc’h K and LV Verchot. 2011.  Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Glob Biogeochem Cycl 25. doi:10.1029/2009GB003718.Howarth RW and SG Fisher.  1976.  Carbon, nitrogen, phosporus dynamic during leaf decay in nutrient-enriched stream microecosystems.  Freshwater Biol 6: 221-228.Husen E and F Agus.  2011.  Microbial activities as affected by peat dryness ans ameliorant.  Am J Environ Sci 7: 348-353.Jauhiainen J, A Hooijer and SE Page.  2012.  Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9: 617–630. DOI:10.5194/bg-9-617-2012.Khalid H, ZZ Zin and JM Anderson.  1999.  Quantification of oil palm biomass and nutrient value in mature planttation.  II Below-ground biomass.  J Oil Palm Res 11: 63-71.Knorr KH, MR Oosterwoud and C Blodau. 2008. Experimental drought alters rates of soil respiration and methanogenesis but not carbon exchange in soil of a temperate fen. Soil Biol Biochem 40: 1781-1791.Law BE, FM Kelliher, DD Baldocchi, PM Anthoni, J. Irvine, D. Moore and SV Tuyl.  2001.  Spatial and temporal variation in respiration in  a young ponderosa pine forest during a summer drought.  Agric Forest Meteorol 110: 27-43.Laiho R, J Laine, CC Trettin and L Finner.  2004.  Scot pine litter decomposition along drainage succession and soil nutrient gradient in peat land forest, and the effect of inter-annual weather variation.  Soil Biol Biochem 36: 1095-1109.Madsen R, L Xu, B Claassen and D McDermit.  2009.  Surface monitoring method for carbon capture and storage projects. Energy Procedia 1: 2161-2168Martoyo K.  1992.  Kajian Sifat Fisik Tanah Podsolik untuk Tanaman Kelapa Sawit (Elaeis gueneensis Jacq) di Sumatera Utara.  Tesis Program Pasca Sarjana,  Universitas Gajah Mada.  Yogyakarta (in Indonesian).Melling L, R Hatano and KJ Goh. 2007. Nitrous oxide emissions from three ecosystem in tropical peatlands of Sarawak, Malaysia. Soil Sci Plant Nutr 53: 792-805.Minkkinen K, J Laine, NJ Shurpali, P Makiranta, J Alm and T Pentilla.  2007.  Heterotropic soil respiration in forestry-drained peatland.  Boreal Environ Res  12: 115-126. Murdiyarso D, K Hergoualc’h K and LV Verchot. 2010 Opportunities for reducing greenhouse gas emissions in tropical peatlands. PNAS 107:  19655-19660.Olsen R, S Linden, R Giesler, and P Hogberg.  2005.  Fertilization of boreal forest reduce of both autrotrophic dan heterotrophic soil respiration .  Glob  Change  Biol  11: 1745-1753.Silvola J, J Valijoki and H Aaltonen.  1985.  Effect of draining and fertilization on soil respiration at three ameliorated peatland site.  Acta For Fem 191: 1-32.Silvola J, J Alm, U Aklholm, H Nykanen and PJ Martikainen.  1996a. Carbon dioxide fluxes from peat in boreal mires under varying temperature and moisture condition.  J Ecol 84: 219-228.Silvola J, J Alm, U. Ahlholm, H Nykanen, and PJ Martikainen.  1996b.  The contribution of plant roots to carbon dioxide fluxes from organic soils.  Biol  Fertil Soils 23: 126-131.Wang W, K Ohseb and J Liuc. 2005.  Contribution of root respiration to soil respiration in a C3/C4 mixed grassland. J Bioscience 30: 507-514. 


2017 ◽  
Vol 12 (1) ◽  
pp. 76-88 ◽  
Author(s):  
Hafizah Nahlunnisa ◽  
Yanto Santosa ◽  
Efrizal AM Zuhud

Oil palm expansion that occurred in Indonesia become the concern today. The expansion of oil palm plantations is a major contribution to the national economy. However oil palm plantations is claimed as the cause of the destruction of primary forests and reduce the diversity of plant species. Therefore, research is needed to explore the history of land cover of oil palm plantations and knowing the divers ity of plant species before and after the oil palm plantations. The study was conducted in March-April 2016 in 6 companies in Riau province. The data collected by the analysis of Landsat imagery to see the condition of land cover prior to their oil palm plantations. In addition, analysis of vegetation in 2-3 plots on land cover before and after the oil palm plantations. The land cover were observed after the oil palm plantations that HCV suspected area as an area that has a high diversity of plant species in oil palm plantations. Analysis of landsat satelite indicated that the history of land cover oil palm plantations is come from secondary forest (19.88%), rubber plantations (59.26%), open land (19.87%), and mixed agriculture (0.99%). The highest diversity of plant that is in HCV which forest areas form . The results showed that the number of plant species was decreased about 60.56-93.33% in the three companies, while the other three companies does not have change the number of plant species. The company did not change the diversity of plant species are those with HCV area in the form of secondary forest that had existed before the oil palm plantations. Thus, there was no history of land cover palm oil from primary forests, and then to the impact of oil palm plantations on plant species diversity was decreased significantly.


2021 ◽  
Vol 18 (5) ◽  
pp. 1559-1575
Author(s):  
Julia Drewer ◽  
Melissa M. Leduning ◽  
Robert I. Griffiths ◽  
Tim Goodall ◽  
Peter E. Levy ◽  
...  

Abstract. In Southeast Asia, oil palm (OP) plantations have largely replaced tropical forests. The impact of this shift in land use on greenhouse gas (GHG) fluxes remains highly uncertain, mainly due to a relatively small pool of available data. The aim of this study is to quantify differences of nitrous oxide (N2O) and methane (CH4) fluxes as well as soil carbon dioxide (CO2) respiration rates from logged forests, oil palm plantations of different ages, and an adjacent small riparian area. Nitrous oxide fluxes are the focus of this study, as these emissions are expected to increase significantly due to the nitrogen (N) fertilizer application in the plantations. This study was conducted in the SAFE (Stability of Altered Forest Ecosystems) landscape in Malaysian Borneo (Sabah) with measurements every 2 months over a 2-year period. GHG fluxes were measured by static chambers together with key soil physicochemical parameters and microbial biodiversity. At all sites, N2O fluxes were spatially and temporally highly variable. On average the largest fluxes (incl. 95 % CI) were measured from OP plantations (45.1 (24.0–78.5) µg m−2 h−1 N2O-N), slightly smaller fluxes from the riparian area (29.4 (2.8–84.7) µg m−2 h−1 N2O-N), and the smallest fluxes from logged forests (16.0 (4.0–36.3) µg m−2 h−1 N2O-N). Methane fluxes were generally small (mean ± SD): −2.6 ± 17.2 µg CH4-C m−2 h−1 for OP and 1.3 ± 12.6 µg CH4-C m−2 h−1 for riparian, with the range of measured CH4 fluxes being largest in logged forests (2.2 ± 48.3 µg CH4-C m−2 h−1). Soil respiration rates were larger from riparian areas (157.7 ± 106 mg m−2 h−1 CO2-C) and logged forests (137.4 ± 95 mg m−2 h−1 CO2-C) than OP plantations (93.3 ± 70 mg m−2 h−1 CO2-C) as a result of larger amounts of decomposing leaf litter. Microbial communities were distinctly different between the different land-use types and sites. Bacterial communities were linked to soil pH, and fungal and eukaryotic communities were linked to land use. Despite measuring a large number of environmental parameters, mixed models could only explain up to 17 % of the variance of measured fluxes for N2O, 3 % of CH4, and 25 % of soil respiration. Scaling up measured N2O fluxes to Sabah using land areas for forest and OP resulted in emissions increasing from 7.6 Mt (95 % confidence interval, −3.0–22.3 Mt) yr−1 in 1973 to 11.4 Mt (0.2–28.6 Mt) yr−1 in 2015 due to the increasing area of forest converted to OP plantations over the last ∼ 40 years.


2014 ◽  
Vol 11 (7) ◽  
pp. 1727-1741 ◽  
Author(s):  
S. Mishra ◽  
W. A. Lee ◽  
A. Hooijer ◽  
S. Reuben ◽  
I. M. Sudiana ◽  
...  

Abstract. Tropical peatlands from southeast Asia are undergoing extensive drainage, deforestation and degradation for agriculture and human settlement purposes. This is resulting in biomass loss and subsidence of peat from its oxidation. Molecular profiling approaches were used to understand the relative influences of different land-use patterns, hydrological and physicochemical parameters on the state of degraded tropical peatlands. As microbial communities play a critical role in biogeochemical cascades in the functioning of peatlands, we used microbial and metabolic profiles as surrogates of community structure and functions, respectively. Profiles were generated from 230 bacterial 16 S rDNA fragments and 145 metabolic markers of 46 samples from 10 sites, including those from above and below water table in a contiguous area of 48 km2 covering five land-use types. These were degraded forest, degraded land, oil palm plantation, mixed crop plantation and settlements. Bacterial profiles were most influenced by variations in water table and land-use patterns, followed by age of drainage and peat thickness in that order. Bacterial profiling revealed differences in sites, based on the duration and frequency of water table fluctuations and on oxygen availability. Mixed crop plantations had the most diverse bacterial and metabolic profiles. Metabolic profiling, being closely associated with biogeochemical functions, could distinguish communities not only based on land-use types but also their geographic locations, thus providing a finer resolution than bacterial profiles. Agricultural inputs, such as nitrates, were highly associated with bacterial community structure of oil palm plantations, whereas phosphates and dissolved organic carbon influenced those from mixed crop plantations and settlements. Our results provide a basis for adopting molecular marker-based approaches to classify peatlands and determine relative importance of factors that influence peat functioning. Our findings will be useful in peatland management by providing a basis to focus early efforts on hydrological interventions and improving sustainability of oil palm plantations by adopting mixed cropping practices to increase microbial diversity in the long term.


Sign in / Sign up

Export Citation Format

Share Document