Melting and dynamic pressure: coupling of reactions, heat transfer and deformation

Author(s):  
Stefan Markus Schmalholz ◽  
Evangelos Moulas ◽  
Yuri Podladchikov

<p>Melting is a major process of plate tectonics, affecting divergent and convergent plate boundaries. Melting of rock is also a typical example of a coupled geological process, in which the associated transformation affects the heat transfer via the latent heat of fusion and the rock deformation via the volume change. However, petrological studies on melting usually focus on chemical aspects, such as differentiation of involved components, thermal studies usually focus only on the impact of latent heat on heat transfer, such as done in the classical Stefan problem of solidification. Similarly, studies focusing on lithosphere and mantle deformation usually only consider the impact on the effective viscosity, such as weakening due to partial melting, or the impact on buoyancy due to density changes. Many studies do, therefore, not consider coupling of melting, heat transfer and rock deformation. Indeed, a common assumption is that rock pressure, or mean stress, remains lithostatic during melting. While this assumption is attractive due to its simplicity, it is against the common knowledge derived from physical experiments and the well-established mechanical theories. Furthermore, theoretical models of melt migration would not work if pressure is everywhere lithostatic, or hydrostatic, because melt migration is driven by local deviations from the static stress state.</p><p>Here, we present simple mathematical models based on the fundamental laws of physics and thermodynamics (e.g. conservation of mass, momentum and energy) to study the fundamental coupling of melting, heat transfer and rock deformation, and to quantify dynamic pressure variations due to melting. We show both analytical and numerical solutions for these models. We discuss applications of these solutions to experiments and geological observations and estimate magnitudes of dynamic pressure resulting from melting under natural conditions.</p>

2019 ◽  
Vol 9 (24) ◽  
pp. 5492 ◽  
Author(s):  
Muhammad Ramzan ◽  
Hina Gul ◽  
Seifedine Kadry ◽  
Chhayly Lim ◽  
Yunyoung Nam ◽  
...  

A novel mathematical model is envisioned discussing the magnetohydrodynamics (MHD) steady incompressible nanofluid flow with uniform free stream velocity over a thin needle in a permeable media. The flow analysis is performed in attendance of melting heat transfer with nonlinear chemical reaction. The novel model is examined at the surface with the slip boundary condition. The compatible transformations are affianced to attain the dimensionless equations system. Illustrations depicting the impact of distinct parameters versus all involved profiles are supported by requisite deliberations. It is perceived that the melting heat parameter has a declining effect on temperature profile while radial velocity enhances due to melting.


Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

This paper examines the behaviour of a hybrid nanofluid flow towards a stagnation point on a stretching or shrinking surface with second-order slip and melting heat transfer effects. Copper (Cu) and alumina (Al2O3) are considered as the hybrid nanoparticles while water as the base fluid. The governing equations are reduced to the similarity equations using similarity transformations. The resulting equations are programmed in MATLAB software through the bvp4c solver to obtain the numerical solutions. The results reveal that two solutions are possible for the shrinking case [Formula: see text], where the bifurcation of the solutions occurs in this region. Moreover, the heat transfer rate and the skin friction coefficient enhance with the rise of the melting parameter. Meanwhile, these quantities decrease for a smaller second-order slip parameter. The temporal stability analysis shows that only one of the two solutions is stable as time evolves.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sheikholeslami ◽  
R. Ellahi ◽  
C. Fetecau

Impact of nanofluid natural convection due to magnetic field in existence of melting heat transfer is simulated using CVFEM in this research. KKL model is taken into account to obtain properties of CuO–H2O nanofluid. Roles of melting parameter (δ), CuO–H2O volume fraction (ϕ), Hartmann number (Ha), and Rayleigh (Ra) number are depicted in outputs. Results depict that temperature gradient improves with rise of Rayleigh number and melting parameter. Nusselt number detracts with rise of Ha. At the end, a comparison as a limiting case of the considered problem with the existing studies is made and found in good agreement.


2000 ◽  
Author(s):  
Toby D. Rule ◽  
Ben Q. Li ◽  
Kelvin G. Lynn

Abstract CdZnTe single crystals for radiation detector and IR substrate applications must be of high quality and controlled purity. The growth of such crystals from a melt is very difficult due to the low thermal conductivity and high latent heat of the material, and the ease with which dislocations, twins and precipitates are introduced during crystal growth. These defects may be related to solute transport phenomena and thermal stresses associated with the solidification process. As a result, production of high quality material requires excellent thermal control during the entire growth process. A comprehensive model is being developed to account for radiation and conduction within the furnace, thermal coupling between the furnace and growth crucible, and finally the thermal stress fields within the growing crystal which result from the thermal conditions imposed on the crucible. As part of this effort, the present work examines the heat transfer and fluid flow within the crucible, using thermal boundary conditions obtained from experimental measurements. The 2-D axisymetric numerical model uses the deforming finite element method, with allowance made for melt convection, solidification with latent heat release and conjugate heat transfer between the solid material and the melt. Results are presented for several stages of growth, including a time-history of the solid-liquid interface (1365 K isotherm). The impact of melt convection, thermal end conditions and furnace temperature gradient on the growth interface is evaluated. Future work will extend the present model to include radiation exchange within the furnace, and a transient analysis for studying solute transport and thermal stress.


Sign in / Sign up

Export Citation Format

Share Document