scholarly journals Impact of Nonlinear Chemical Reaction and Melting Heat Transfer on an MHD Nanofluid Flow over a Thin Needle in Porous Media

2019 ◽  
Vol 9 (24) ◽  
pp. 5492 ◽  
Author(s):  
Muhammad Ramzan ◽  
Hina Gul ◽  
Seifedine Kadry ◽  
Chhayly Lim ◽  
Yunyoung Nam ◽  
...  

A novel mathematical model is envisioned discussing the magnetohydrodynamics (MHD) steady incompressible nanofluid flow with uniform free stream velocity over a thin needle in a permeable media. The flow analysis is performed in attendance of melting heat transfer with nonlinear chemical reaction. The novel model is examined at the surface with the slip boundary condition. The compatible transformations are affianced to attain the dimensionless equations system. Illustrations depicting the impact of distinct parameters versus all involved profiles are supported by requisite deliberations. It is perceived that the melting heat parameter has a declining effect on temperature profile while radial velocity enhances due to melting.

2016 ◽  
Vol 5 (3) ◽  
Author(s):  
M.R. Krishnamurthy ◽  
B.J. Gireesha ◽  
B.C. Prasannakumara ◽  
Rama Subba Reddy Gorla

AbstractA theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.


Sign in / Sign up

Export Citation Format

Share Document