Automated soil water content-based irrigation under high and low water availability scenarios for a nectarine orchard

Author(s):  
María R. Conesa ◽  
Wenceslao Conejero ◽  
Juan Vera ◽  
Mª Carmen Ruiz-Sánchez

<p>In a low water availability scenario, as is increasingly frequent in Mediterranean areas threatened by climate change and endemic water scarcity, to achieve the best irrigation water efficiency is of vital importance. This study aimed to assess the feasibility of an automated irrigation scheduling strategy based on real-time threshold volumetric soil water content values (VSWC), monitored with capacitance probes, in adult early-maturing nectarine orchard (Prunus persica (L.) Batsch cv. `Flariba’, on GxN-15 rootstock). Two drip irrigation practices were tested: one control treatment (T-0) based on conventional crop evapotranspiration calculations (ETc, FAO-56), and one automated treatment (T-A) based on management allowed depletion (MAD) threshold values, derived from VSWC data, with a feed-back control system. Furthermore, for both treatments agro-physiological responses were evaluated under two different water availability scenarios (each one comprised of three consecutive growing seasons): no water restrictions (high water availability), and deficit irrigation (low water availability), in which reduced water to irrigate nectarine trees involved regulated deficit irrigation criteria.  In the high water availability scenario, T-A (MAD = 10%) and T-0 (ETc = 100%) irrigation treatments showed no significant differences in the plant-soil water status, vegetative growth, yield, and nectarine fruit quality parameters. The VSWC was not a limiting factor and full irrigating to achieve a maximum yield was a profitable option. In the low water availability scenario, the T-A treatment (subjected to MAD = 10% during pre-harvest and 30% during post-harvest) received 43% less water than the control, which promoted moderate plant and soil water deficits, leading to a decrease in vegetative growth (winter pruning weight and tree canopy cover), without compromising the total yield and nectarine fruit quality parameters (including an increase in the total soluble solid content). The crop water use efficiency increased by an average of 34%. The proposed automated irrigation strategy, based on MAD seasonal threshold values, combined with regulated deficit irrigation phenological criteria could be considered a promising tool that could be eventually extrapolated to other stone fruit orchards under water scarcity conditions. Acknowledgements: This work was funded by Spanish Agencia Estatal de Investigación (PID2019-106226RB-C21/AEI/10.13039/501100011033) and Fundacion Séneca, Región de Murcia (19903/GERM/15) projects.</p>

OENO One ◽  
2001 ◽  
Vol 35 (3) ◽  
pp. 129 ◽  
Author(s):  
Peter R. Dry ◽  
B. R. Loveys ◽  
M. G. Mccarthy ◽  
Manfred Stoll

<p style="text-align: justify;">Regulated Deficit Irrigation (RDI) and Partial Rootzone Drying (PRD) are examples of strategie irrigation management. They have been successfully adopted for winegrape production in Australia with the aim of controlling vegetative growth to produce 'balanced' vines, and to improve both water-use efficiency (measured as tonnes of fruit per ML of irrigation water applied) and fruit quality for winemaking. This paper will outline some of the physiological principles that underpin these strategies and provide details of experimental and commercial experience in Australian vineyards.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 796
Author(s):  
Mohamed A. Mattar ◽  
Said S. Soliman ◽  
Rashid S. Al-Obeed

A field experiment was conducted on date palm trees (Phoenix dactylifera ‘Succary’) cultivated on sandy loam soil from 2017 to 2018. This study investigated the effects of providing water of three different qualities, namely freshwater (FR) and two saline water sources: reclaimed wastewater (RW) and well-water (WE) applied through three irrigation levels representing 50% (I50), 100% (I100), and 150% (I150) of crop evapotranspiration (ETc), on the soil water and salt distribution patterns, yield, water productivity (WP), and fruit quality of the ′Succary′ date palm. The electrical conductivity (ECw) of FR, RW, and WE were 0.18, 2.06, and 3.94 dS m−1, respectively. Results showed that WE applied by the I150 treatment had the highest soil water content, followed by RW used in the I100 irrigation level and FR with I50, whereas the soil salt content was high for WE applied in the I50 level and low for FR applied by the I150 treatment. Deficit irrigation (I50) of date palms with either RW or WE reduced date yields on average 86 kg per tree, whereas the yield increased under over-irrigation (I150) with FR to 123.25 kg per tree. High WP values were observed in the I50 treatments with FR, RW, or WE (on average 1.82, 1.68, and 1.67 kg m−3, respectively), whereas the I150 treatment with each of the three water types showed the lowest WP values. Fruit weight and size were the lowest in the full irrigation (I100) with WE, whereas the I150 treatment with RW showed the highest values. There were no significant differences in either total soluble solids (TSS) or acidity values when the irrigation level decreased from 100% to 50% ETc. Compared with both I50 and I100 treatments, reduced values of both TSS and acidity were observed in the I150 treatment when ECw decreased from 3.94 to 0.18 dS m−1,. Fruit moisture content decreased with the application of saline irrigation water (i.e., RW or WE). Total sugar and non-reducing sugar contents in fruits were found to be decreased in the combination of RW and I150, whereas the 50% ETc irrigation level caused an increment in both parameters. These results suggest that the application of deficit irrigation to date palm trees grown in arid regions, either with FR or without it, can sufficiently maximize WP and improve the quality of fruits but negatively affects yield, especially when saline water is applied. The use of saline water for irrigation may negatively affect plants because of salt accumulation in the soil in the long run.


HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 450-456 ◽  
Author(s):  
Jason E. Stout ◽  
Joan R. Davenport ◽  
R. Troy Peters

Drought conditions in the western United States have limited water availability for the irrigation of agricultural products. This can have a dramatic impact on yield and quality of specialty perennial crops, such as juice grapes (Vitis labruscana Bailey). Washington State juice grape industry typically irrigates to 100% of crop-specific evapotranspiration (ETc) throughout the season to minimize yield loss. However, as conditions have limited water availability, growers need a new strategy to cope with the limited water supply. Regulated deficit irrigation (RDI) applies less water than plant ETc and has been shown to improve fruit quality in red wine grapes (Vitis vinifera). The objectives of this study were to evaluate the effects of RDI treatments on the yield and quality of ‘Concord’ juice grapes as compared with current commercial practice. The treatments reduced the amount of water applied between bloom and veraison by 25% (−25%), 33% (−33%), and 45% (−45%) from the control application. The results of this 4-year study initially indicated a dramatic decrease in yield in the −45% treatment (7.5 Mg/ha) as compared with the control treatment (19.2 Mg/ha); however, yield for the RDI treatments recovered in the subsequent seasons and was not statically different from the control. There were no statistical differences in fruit quality between treatments. This indicates that RDI has the potential to decrease water applied between bloom and veraison without impacting fruit quality; however, to avoid a sudden decrease in yield, it would be necessary to gradually reduce water applications over several years.


2000 ◽  
Vol 125 (1) ◽  
pp. 135-142 ◽  
Author(s):  
A.M. Boland ◽  
P.H. Jerie ◽  
P.D. Mitchell ◽  
I. Goodwin ◽  
D.J. Connor

Individual and interactive effects of restricted root volume (RRV) and regulated deficit irrigation (RDI) on vegetative growth and mineral nutrition of peach trees [Prunus persica (L.) Batsch (Peach Group) `Golden Queen'] were studied over 3 years (1992-95). Trees were grown in lysimeters of five different volumes (0.025, 0.06, 0.15, 0.4, and 1.0 m3) with either full or deficit (RDI) irrigation. Increasing soil volume increased vegetative growth as measured by trunk cross-sectional area (TCA) (linear and quadratic, P < 0.011) and tree weight (linear, P < 0.001) with the final TCA ranging from 29.0 to 51.0 cm2 and tree weight ranging from 7.2 to 12.1 kg for the smallest to largest volumes. Root density measured at the completion of the experiment decreased with increasing soil volume (linear and quadratic, P < 0.001) with root length density declining from 24.0 to 2.0 cm·cm-3. RDI reduced vegetative growth by up to 70% as measured by weight of summer prunings. Root restriction was effective in controlling vegetative vigor and is a viable alternative for control of vegetative growth. Mineral nutrition did not limit tree growth.


2017 ◽  
Vol 36 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Tomás E. Lobos ◽  
Jorge B. Retamales ◽  
Samuel Ortega-Farías ◽  
Eric J. Hanson ◽  
Rafael López-Olivari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document