scholarly journals Multiple stages of serpentinization in mantle derived peridotites of the South Armorican Variscan suture zone

Author(s):  
Geoffrey Aertgeerts ◽  
Didier Lahondère ◽  
Christophe Monnier ◽  
Jean-Pierre Lorand

<p>South Armorican mantle peridotites represent a great diversity of protoliths from supra-subduction zone to arc-fore arc ophiolites. In this study, we investigate the serpentinization of these protoliths. Numerous samples were collected in five different units, which represent ophiolitic dismembered pieces (Ty-Lan Peridotites (TLP) from the Audierne Complex, and Pont de Barel Peridotites (PBP), Folies Siffait Peridotites (FSP), l’Orgerais Peridotites (LOP) and Drain Peridotites (DP) from the Champtoceaux Complex). Field and microscopic observations together with Raman spectroscopy and electronic microprobe analysis (EMPA) allowed to identify several stages of serpentinization. All samples display a high rate of serpentinization, up to 80-90 %. Primary assemblage is represented by spinel (TLP, PBP, DP and LOP), olivine (TLP and FSP) and Ti-poor or Cr-rich pargasite (TLP and PBP). In all the samples, lizardite from olivine and bastites from pyroxene and amphibole characterize the first stage of serpentinization. It is associated with magnetite crystallization. No Al-rich lizardite meshe is identified by EMPA suggesting a low temperature (< 340°C) event. This serpentinization is followed by two generations of veins (V1 and V2). The V1 are Al-poor lizardite shear veins and crack-seal chrysotile veins characterize the V2. In PBP, microprobe mapping shows that V2 displays heterogeneous chemical chrysotile composition with significant variations of Al, Fe and Mg contents, suggesting metasomatism and/or variation of fluid composition during serpentinization. All these observations are closely similar to those of oceanic serpentinized peridotites. In the TLP, we identified a second stage of serpentinization characterized by antigorite after lizardite suggesting a high temperature event. In the OP, antigorite after lizardite was also identified. However, compared to the TLP ones, LOP antigorite is related to ductile (i.e., ultramylonite) deformations. This clearly indicates a high temperature stage of serpentinization (up to 500 °C). Furthermore, LOP ultramylonitized samples display one more chrysotile veins generation (V3) characterized by three distinct vein networks. The first one (V3a) is a crack-seal type vein network opened parallel to the main foliation. The second one (V3b) is perpendicular to the first one, whereas the third one (V3c) corresponds to tension gashes connected to C’ plans. This latter is perpendicular to V3a and V3b networks. The mylonitic foliation of LOP is similar to the surrounding micaschists schistosity, suggesting an orogenic high temperature stage of serpentinization. In the FSP, σ-type polycrystalline structures were identified. Lizardite meshes are progressively transposed and recrystallized into the foliation plan. This stage is associated with the crystallization of chlorite after tremolite, suggesting a retrograde stage of serpentinization during serpentinites exhumation. Finally, despite a great diversity of mantle-derived protoliths, our study shows that South-Armorican peridotites recorded a similar first low temperature oceanic stage of serpentinization. According to the Variscan history, it could have started during the Cambro-Ordovician for TLP, and during the Late Devonian for PBP, DP, LOP, FSP. Furthermore, some of these peridotites also recorded an orogenic serpentinization (LOP and FLP). Such observations provide new constraints that could be useful to a better understanding of the tectonometamorphic evolution of the South Armorican suture zones during the Variscan orogeny. </p>

2012 ◽  
Vol 614-615 ◽  
pp. 103-106
Author(s):  
Hong Peng Liu ◽  
Wei Yi Li ◽  
Xu Dong Wang ◽  
Hao Xu ◽  
Guan Yi Chen ◽  
...  

Co-combustion experiment of oil shale semi-coke and corn stalk at different blend ratios was performed using thermogravimetric analyzer. The influence of different blend ratios has been studied. The combustion characteristics are obtained under the heating rates of 20oC/min and the experimental temperature range of 40-850oC. The combustion process of the blends is divided into three stages: low-temperature stage, transition stage and high-temperature stage. With the increasing of corn stalk in the blends, the reaction of combustion mainly shifts from high-temperature stage to low-temperature stage, and there is no obvious change for the ignition temperature, but the burn out temperature comes down. The combustion kinetics parameters of the blends were analyzed using Flynn-Wall-Ozawa model. The result shows that the activation energy of the volatile matter stage increases and the activation energy of semi-coke combustion stage decreases. The combustion characteristics of the oil shale semi-coke get improved significantly with the mixture of corn stalk.


2020 ◽  
Vol 51 (1) ◽  
pp. 93-130 ◽  
Author(s):  
P. Maurizot ◽  
D. Cluzel ◽  
M. Patriat ◽  
J. Collot ◽  
M. Iseppi ◽  
...  

AbstractConvergence and subduction started in the Late Paleocene, to the east of New Caledonia in the South Loyalty Basin/Loyalty Basin, leading to the formation of the Subduction–Obduction Complex of Grande Terre. Convergence during the Eocene consumed the oceanic South Loyalty Basin and the northeasternmost margin of Zealandia (the Norfolk Ridge). The attempted subduction of the Norfolk Ridge eventually led to the end-Eocene obduction. Intra-oceanic subduction started in the South Loyalty Basin, as indicated by high-temperature amphibolite (56 Ma), boninite and adakite series dykes (55–50 Ma) and changes in the sedimentation regime (55 Ma). The South Loyalty Basin and its margin were dragged to a maximum depth of 70 km, forming the high-pressure–low-temperature Pouébo Terrane and the Diahot–Panié Metamorphic Complex, before being exhumed at 38–34 Ma. The obduction complex was formed by the stacking from NE to SW of several allochthonous units over autochthonous Zealandia, including the Montagnes Blanches Nappe (Norfolk Ridge crust), the Poya Terrane (the crust of the South Loyalty Basin) and the Peridotite Nappe (the mantle lithosphere of the Loyalty Basin). A model of continental subduction accepted by most researchers is proposed and discussed. Offshore continuations and comparable units in Papua New Guinea and New Zealand are presented.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
A. Elgsaeter ◽  
T. Espevik ◽  
G. Kopstad

The importance of a high rate of temperature decrease (“rapid freezing”) when freezing specimens for freeze-etching has long been recognized1. The two basic methods for achieving rapid freezing are: 1) dropping the specimen onto a metal surface at low temperature, 2) bringing the specimen instantaneously into thermal contact with a liquid at low temperature and subsequently maintaining a high relative velocity between the liquid and the specimen. Over the last couple of years the first method has received strong renewed interest, particularily as the result of a series of important studies by Heuser and coworkers 2,3. In this paper we will compare these two freezing methods theoretically and experimentally.


2020 ◽  
Vol 10 (10) ◽  
pp. 59-67
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

The overall dimensions and mass of wind power units with capacities larger than 10 MW can be improved and their cost can be decreased by developing and constructing superconducting synchronous generators. The article analyzes foreign conceptual designs of superconducting synchronous generators based on different principles: with the use of high- and low-temperature superconductivity, fully superconducting or only with a superconducting excitation system, and with the use of different materials (MgB2, Bi2223, YBCO). A high cost of superconducting materials is the main factor impeding commercial application of superconducting generators. In view of the state of the art in the technology for manufacturing superconductors and their cost, a conclusion is drawn, according to which a synchronous gearless superconducting wind generator with a capacity of 10 MW with the field winding made of a high-temperature superconducting material (MgB2, Bi-2223 or YBCO) with the «ferromagnetic stator — ferromagnetic rotor» topology, with the stator diameter equal to 7—9 m, and with the number of poles equal to 32—40 has prospects for its practical use in the nearest future.


Alloy Digest ◽  
1980 ◽  
Vol 29 (12) ◽  

Abstract SOMERS LTA Copper is a wrought copper foil that can be annealed at 350 F in 15 minutes to the full-soft condition; its use simplifies the manufacture of printed circuits (LTA = Low-Temperature Annealable). LTA Copper is especially useful for foil weights up to and including one ounce per square foot (0.0014-inch thick) for laminating to high-temperature dielectric substrates. This datasheet provides information on composition, physical properties, and elasticity as well as fatigue. It also includes information on forming, heat treating, and machining. Filing Code: Cu-407. Producer or source: Olin Corporation.


Alloy Digest ◽  
1958 ◽  
Vol 7 (2) ◽  

Abstract CHRO-MOW is a tough hot work steel which will harden from a relatively low temperature in air. It possesses a desirable combination of toughness and red-hardness. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-67. Producer or source: Crucible Steel Company of America.


Alloy Digest ◽  
1960 ◽  
Vol 9 (3) ◽  

Abstract NICLOY 5 is a low carbon, nickel ferritic steel reecommended for low temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-96. Producer or source: Babcock & Wilcox Company.


2020 ◽  
Vol 13 (9) ◽  
pp. 095504
Author(s):  
Ayumu Shimizu ◽  
Shintaro Tsuno ◽  
Masahiro Kamiyama ◽  
Keiju Ishibashi ◽  
Akira Kitamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document